-
Notifications
You must be signed in to change notification settings - Fork 5.7k
/
Copy pathdist_kernel.cu
196 lines (170 loc) · 6.73 KB
/
dist_kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/dist_kernel.h"
#include "paddle/phi/kernels/elementwise_subtract_kernel.h"
#include "paddle/phi/kernels/funcs/math_cuda_utils.h"
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/legacy/reduce_max_kernel.h"
#include "paddle/phi/kernels/p_norm_kernel.h"
#include "paddle/phi/kernels/reduce_min_kernel.h"
namespace phi {
#define FULL_MASK 0xffffffff
template <typename Tx, typename Ty = Tx>
struct ZeroOrderFunctor {
public:
HOSTDEVICE explicit inline ZeroOrderFunctor() {}
HOSTDEVICE inline Ty operator()(const Tx& x, const Tx& y) const {
return static_cast<Ty>(x != y);
}
};
template <typename Tx, typename Ty = Tx>
struct OtherOrderFunctor {
HOSTDEVICE explicit inline OtherOrderFunctor(const Ty& p_order)
: p_order_(p_order) {}
HOSTDEVICE inline Ty operator()(const Tx& x, const Tx& y) const {
return static_cast<Ty>(
pow(abs(static_cast<Ty>(x) - static_cast<Ty>(y)), p_order_));
}
private:
Ty p_order_;
};
template <typename Tx, typename Ty = Tx>
struct PowFunctor {
HOSTDEVICE explicit inline PowFunctor(const Ty& p_order)
: p_order_(p_order) {}
HOSTDEVICE inline Tx operator()(const Tx x) const {
return static_cast<Tx>(pow(static_cast<Ty>(x), p_order_));
}
Ty p_order_;
};
template <typename T, typename Functor>
__global__ void ReduceSumWithSubtract(
const T* x, const T* y, T* out, int64_t N, Functor func) {
using MT = typename phi::dtype::MPTypeTrait<T>::Type;
MT sum_val(0.0);
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
i += blockDim.x * gridDim.x) {
sum_val += func(x[i], y[i]);
}
__syncthreads();
sum_val = phi::funcs::BlockReduceSum<MT>(sum_val, FULL_MASK);
if (threadIdx.x == 0) {
out[blockIdx.x] = static_cast<T>(sum_val);
}
}
template <typename T>
__global__ void ReduceMaxWithSubtract(const T* x,
const T* y,
T* out,
int64_t N) {
using MT = typename phi::dtype::MPTypeTrait<T>::Type;
MT max_val = std::numeric_limits<MT>::min();
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
i += blockDim.x * gridDim.x) {
max_val = max(max_val, abs(static_cast<MT>(x[i]) - static_cast<MT>(y[i])));
}
__syncthreads();
max_val = phi::funcs::BlockReduceMax<MT>(max_val, FULL_MASK);
if (threadIdx.x == 0) {
out[blockIdx.x] = static_cast<T>(max_val);
}
}
template <typename T>
__global__ void ReduceMinWithSubtract(const T* x,
const T* y,
T* out,
int64_t N) {
using MT = typename phi::dtype::MPTypeTrait<T>::Type;
MT min_val = std::numeric_limits<MT>::max();
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
i += blockDim.x * gridDim.x) {
min_val = min(min_val, abs(static_cast<MT>(x[i]) - static_cast<MT>(y[i])));
}
__syncthreads();
min_val = phi::funcs::BlockReduceMin<MT>(min_val, FULL_MASK);
if (threadIdx.x == 0) {
out[blockIdx.x] = static_cast<T>(min_val);
}
}
template <typename T, typename Context>
void DistKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& y,
float p,
DenseTensor* out) {
using MT = typename phi::dtype::MPTypeTrait<T>::Type;
DenseTensor intermediate;
const T* x_ptr = x.data<T>();
const T* y_ptr = y.data<T>();
T* o_ptr = dev_ctx.template Alloc<T>(out);
auto stream = dev_ctx.stream();
auto xdim = x.dims();
if (xdim == y.dims()) { // same shape
auto n = x.numel();
auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, n);
intermediate.Resize(common::make_ddim({config.block_per_grid.x}));
T* i_ptr = dev_ctx.template Alloc<T>(&intermediate);
std::vector<int64_t> axis_dims = {static_cast<int64_t>(-1)};
std::vector<int> reduce_axis =
funcs::details::GetReduceDim(axis_dims, xdim.size(), true);
if (p == 0) {
ReduceSumWithSubtract<T>
<<<config.block_per_grid.x, config.thread_per_block.x, 0, stream>>>(
x_ptr, y_ptr, i_ptr, n, ZeroOrderFunctor<T, MT>());
phi::funcs::ReduceKernel<T, T, kps::AddFunctor, kps::IdentityFunctor<MT>>(
dev_ctx, intermediate, out, kps::IdentityFunctor<MT>(), reduce_axis);
} else if (p == INFINITY) {
ReduceMaxWithSubtract<T>
<<<config.block_per_grid.x, config.thread_per_block.x, 0, stream>>>(
x_ptr, y_ptr, i_ptr, n);
phi::MaxRawKernel<T, Context>(
dev_ctx, intermediate, reduce_axis, true, true, out);
} else if (p == -INFINITY) {
ReduceMinWithSubtract<T>
<<<config.block_per_grid.x, config.thread_per_block.x, 0, stream>>>(
x_ptr, y_ptr, i_ptr, n);
phi::MinRawKernel<T, Context>(
dev_ctx, intermediate, reduce_axis, true, true, out);
} else {
MT p_order = static_cast<MT>(p);
ReduceSumWithSubtract<T>
<<<config.block_per_grid.x, config.thread_per_block.x, 0, stream>>>(
x_ptr, y_ptr, i_ptr, n, OtherOrderFunctor<T, MT>(p_order));
phi::funcs::ReduceKernel<T, T, kps::AddFunctor, kps::IdentityFunctor<MT>>(
dev_ctx, intermediate, out, kps::IdentityFunctor<MT>(), reduce_axis);
const DenseTensor* tmp_norm = out;
std::vector<const DenseTensor*> ins = {tmp_norm};
std::vector<DenseTensor*> outs = {out};
MT p_order_ = static_cast<MT>(static_cast<MT>(1.) / p_order);
phi::funcs::ElementwiseKernel<T>(
dev_ctx, ins, &outs, PowFunctor<T, MT>(p_order_));
}
} else {
auto t = Subtract<T, Context>(dev_ctx, x, y);
PNormKernel<T, Context>(dev_ctx, t, p, -1, 1e-12, false, true, out);
}
}
} // namespace phi
PD_REGISTER_KERNEL(dist,
GPU,
ALL_LAYOUT,
phi::DistKernel,
float,
double,
phi::dtype::bfloat16,
phi::dtype::float16) {}