-
Notifications
You must be signed in to change notification settings - Fork 5.7k
/
Copy pathp_norm_grad_kernel.cu
114 lines (105 loc) · 3.7 KB
/
p_norm_grad_kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/p_norm_grad_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/reduce_grad_functions.h"
namespace phi {
template <typename T>
struct AbsMaxAndMinGradFunctor {
template <typename Context,
typename X,
typename Y,
typename DX,
typename DY,
typename Dim>
void operator()(const Context& place,
X* x,
Y* y,
DX* dx,
DY* dy,
const Dim& dim,
int size) {
dx->device(place) = dy->broadcast(dim) * (*x).sign() *
((*x).abs() == y->broadcast(dim)).template cast<T>();
}
};
template <typename T>
struct PNormGradFunctor {
HOSTDEVICE explicit inline PNormGradFunctor(float porder, float eps) {
this->porder = static_cast<T>(porder - 1.);
this->eps = static_cast<T>(eps);
}
template <typename Context,
typename X,
typename Y,
typename DX,
typename DY,
typename Dim>
void operator()(const Context& place,
X* x,
Y* y,
DX* dx,
DY* dy,
const Dim& dim,
int size) {
dx->device(place) =
(*x).abs().pow(this->porder) * (*x).sign() * dy->broadcast(dim) *
(*y + y->constant(eps)).pow(-this->porder).broadcast(dim);
}
T porder;
T eps;
};
template <typename T, typename Context>
void PNormGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out,
const DenseTensor& out_grad,
float porder,
int axis,
float epsilon,
bool keepdim,
bool asvector,
DenseTensor* x_grad) {
auto* in_x = &x;
auto* in_norm = &out;
auto* in_norm_dy = &out_grad;
auto* out_dx = x_grad;
dev_ctx.template Alloc<T>(out_dx);
auto xdim = in_x->dims();
bool reduce_all = (in_norm->numel() == 1);
if (axis < 0) axis = xdim.size() + axis;
const std::vector<int> dims = {axis};
if (porder == 0) {
phi::funcs::SetConstant<Context, T> set_zero;
set_zero(dev_ctx, out_dx, static_cast<T>(0));
} else if (porder == INFINITY || porder == -INFINITY) {
AbsMaxAndMinGradFunctor<T> functor;
funcs::LaunchReduceGradKernel<Context, T, AbsMaxAndMinGradFunctor<T>>(
dev_ctx, in_x, in_norm, in_norm_dy, out_dx, functor, dims, reduce_all);
} else {
auto functor = PNormGradFunctor<T>(porder, epsilon);
funcs::LaunchReduceGradKernel<Context, T, PNormGradFunctor<T>>(
dev_ctx, in_x, in_norm, in_norm_dy, out_dx, functor, dims, reduce_all);
}
}
} // namespace phi
PD_REGISTER_KERNEL(p_norm_grad,
GPU,
ALL_LAYOUT,
phi::PNormGradKernel,
float,
double,
phi::dtype::float16,
phi::dtype::bfloat16) {}