-
Notifications
You must be signed in to change notification settings - Fork 5.7k
/
Copy pathcreation.py
1245 lines (986 loc) · 46.1 KB
/
creation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
from paddle.common_ops_import import fill_constant
from ..fluid.layers import utils
from ..fluid.layers import tensor
from ..fluid.framework import Variable
from ..fluid.framework import unique_name
from ..fluid.framework import _current_expected_place, _get_paddle_place
from ..fluid.framework import dygraph_only
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
# TODO: define functions to get create a tensor
from ..fluid.layers import linspace # noqa: F401
import paddle
from paddle import _C_ops
__all__ = []
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
r"""
Constructs a ``paddle.Tensor`` from ``data`` ,
which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.
If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.
Args:
data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
'complex64' , 'complex128'. Default: None, infers dtype from ``data``
except for python float number which gets dtype from ``get_default_type`` .
place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.
Returns:
Tensor: A Tensor constructed from ``data`` .
Raises:
TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor
ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string.
Examples:
.. code-block:: python
import paddle
type(paddle.to_tensor(1))
# <class 'paddle.Tensor'>
paddle.to_tensor(1)
# Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
# [1])
x = paddle.to_tensor(1, stop_gradient=False)
print(x)
# Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
# [1])
paddle.to_tensor(x) # A new tensor will be created with default stop_gradient=True
# Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
# [1])
paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
# Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
# [[0.10000000, 0.20000000],
# [0.30000001, 0.40000001]])
type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
# <class 'paddle.Tensor'>
paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
# Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
# [[(1+1j), (2+0j)],
# [(3+2j), (4+0j)]])
"""
place = _get_paddle_place(place)
if place is None:
place = _current_expected_place()
elif not isinstance(place, (core.Place, core.CPUPlace, core.CUDAPinnedPlace,
core.CUDAPlace, core.NPUPlace)):
raise ValueError(
"'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace, paddle.NPUPlace"
)
#Todo(zhouwei): Support allocate tensor on any other specified card
if isinstance(place, core.CUDAPlace) and isinstance(
_current_expected_place(), core.CUDAPlace) and place._get_device_id(
) != _current_expected_place()._get_device_id():
place = _current_expected_place()
if not isinstance(data, np.ndarray):
def _handle_dtype(data, dtype):
if dtype:
if convert_dtype(dtype) != convert_dtype(data.dtype):
return data.astype(convert_dtype(dtype))
return data
if np.isscalar(data) and not isinstance(data, str):
data = np.array([data])
elif isinstance(data, (list, tuple)):
data = np.array(data)
if data.dtype == np.object:
raise ValueError(
"\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
"this means the input data contains nested lists with different lengths. "
)
elif isinstance(data, paddle.Tensor):
data = data._copy_to(place, False)
data = _handle_dtype(data, dtype)
data.stop_gradient = stop_gradient
return data
elif isinstance(data, (core.LoDTensor, core.Tensor)):
# Note(zhouwei25): should't expose it to users, just for internal use.
# convert core.Tensor/core.LoDTensor to VarBase first
# Currenly, there is no copy when places are same
data = paddle.Tensor(data)
if not data.place._equals(place):
data = data._copy_to(place, False)
data = _handle_dtype(data, dtype)
data.stop_gradient = stop_gradient
return data
else:
raise TypeError(
"Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor".
format(type(data)))
if not dtype and data.dtype in [
'float16', 'float32', 'float64', 'complex64', 'complex128'
]:
default_type = paddle.get_default_dtype()
if np.iscomplexobj(data):
default_type = 'complex64' if default_type in [
'float16', 'float32'
] else 'complex128'
data = data.astype(default_type)
if dtype and convert_dtype(dtype) != data.dtype:
data = data.astype(convert_dtype(dtype))
return paddle.Tensor(
value=data,
place=place,
persistable=False,
zero_copy=False,
stop_gradient=stop_gradient)
def full_like(x, fill_value, dtype=None, name=None):
"""
This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
If the ``dtype`` is None, the data type of Tensor is same with ``x``.
Args:
x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
dtype(np.dtype|str, optional): The data type of output. The data type can be one
of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
data type is the same as input.
name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
Examples:
.. code-block:: python
import paddle
import numpy as np
input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
output = paddle.full_like(input, 2.0)
# [[2. 2. 2.]
# [2. 2. 2.]]
"""
if dtype is None:
dtype = x.dtype
else:
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
if in_dygraph_mode():
return _C_ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
helper = LayerHelper("full_like", **locals())
check_variable_and_dtype(
x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
'full_like')
check_dtype(dtype, 'dtype',
['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
'full_like/zeros_like/ones_like')
out = helper.create_variable_for_type_inference(dtype=dtype)
helper.append_op(
type='fill_any_like',
inputs={'X': [x]},
attrs={'value': fill_value,
"dtype": dtype},
outputs={'Out': [out]})
out.stop_gradient = True
return out
def ones(shape, dtype=None, name=None):
"""
The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
Args:
shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
dtype(np.dtype|str, optional): Data type of output Tensor, it supports
bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
Examples:
.. code-block:: python
import paddle
# default dtype for ones OP
data1 = paddle.ones(shape=[3, 2])
# [[1. 1.]
# [1. 1.]
# [1. 1.]]
data2 = paddle.ones(shape=[2, 2], dtype='int32')
# [[1 1]
# [1 1]]
# shape is a Tensor
shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
data3 = paddle.ones(shape=shape, dtype='int32')
# [[1 1]
# [1 1]]
"""
if dtype is None:
dtype = 'float32'
return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
def ones_like(x, dtype=None, name=None):
"""
This OP returns a Tensor filled with the value 1, with the same shape and
data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
Args:
x(Tensor): The input tensor which specifies shape and dtype. The
dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
output tensor. Supported data types: bool, float16, float32, float64,
int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
Default is None.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with the value 1, with the same shape and
data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
Raise:
TypeError: If ``dtype`` is not None and is not bool, float16, float32,
float64, int32 or int64.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([1,2,3])
out1 = paddle.ones_like(x) # [1., 1., 1.]
out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
"""
return full_like(x=x, fill_value=1, dtype=dtype, name=name)
def zeros(shape, dtype=None, name=None):
"""
The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
Args:
shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
dtype(np.dtype|str, optional): Data type of output Tensor, it supports
bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
Examples:
.. code-block:: python
import paddle
data = paddle.zeros(shape=[3, 2], dtype='float32')
# [[0. 0.]
# [0. 0.]
# [0. 0.]]
data = paddle.zeros(shape=[2, 2])
# [[0. 0.]
# [0. 0.]]
# shape is a Tensor
shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
data3 = paddle.zeros(shape=shape, dtype='int32')
# [[0 0]
# [0 0]]
"""
if dtype is None:
dtype = 'float32'
return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
def zeros_like(x, dtype=None, name=None):
"""
This OP returns a Tensor filled with the value 0, with the same shape and
data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
Args:
x(Tensor): The input tensor which specifies shape and dtype. The
dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
output tensor. Supported data types: bool, float16, float32, float64,
int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
Default is None.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with the value 0, with the same shape and
data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
Raise:
TypeError: If ``dtype`` is not None and is not bool, float16, float32,
float64, int32 or int64.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([1, 2, 3])
out1 = paddle.zeros_like(x) # [0., 0., 0.]
out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
"""
return full_like(x=x, fill_value=0, dtype=dtype, name=name)
def eye(num_rows, num_columns=None, dtype=None, name=None):
"""
This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
Args:
num_rows(int): the number of rows in each batch Tensor.
num_columns(int, optional): the number of columns in each batch Tensor.
If None, default: num_rows.
dtype(np.dtype|str, optional): The data type of the returned Tensor.
It should be int32, int64, float16, float32, float64. Default: if None, the data type
is float32.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
Examples:
.. code-block:: python
import paddle
data = paddle.eye(3, dtype='int32')
# [[1 0 0]
# [0 1 0]
# [0 0 1]]
data = paddle.eye(2, 3, dtype='int32')
# [[1 0 0]
# [0 1 0]]
"""
if dtype is None:
dtype = 'float32'
if num_columns is None:
num_columns = num_rows
return paddle.fluid.layers.eye(num_rows=num_rows,
num_columns=num_columns,
batch_shape=None,
dtype=dtype,
name=name)
def full(shape, fill_value, dtype=None, name=None):
"""
This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
Args:
shape(list|tuple|Tensor): Shape of the Tensor to be created.
The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
the elements of it should be integers or Tensors with shape [1].
If ``shape`` is an Tensor, it should be an 1-D Tensor .
fill_value(bool|float|int|Tensor): The constant value
used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
dtype(np.dtype|str, optional): Data type of the output Tensor
which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
type of created Tensor is `float32`
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
Examples:
.. code-block:: python
import paddle
data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64')
#[[0]
# [0]]
# attr shape is a list which contains Tensor.
positive_2 = paddle.full([1], 2, "int32")
data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
# [[1.5 1.5]]
# attr shape is a Tensor.
shape = paddle.full([2], 2, "int32")
data4 = paddle.full(shape=shape, dtype='bool', fill_value=True)
# [[True True]
# [True True]]
# attr fill_value is a Tensor.
val = paddle.full([1], 2.0, "float32")
data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
# [[2.0]
# [2.0]]
"""
if dtype is None:
dtype = 'float32'
return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
def arange(start=0, end=None, step=1, dtype=None, name=None):
"""
This OP returns a 1-D Tensor with spaced values within a given interval.
Values are generated into the half-open interval [``start``, ``end``) with
the ``step``. (the interval including ``start`` but excluding ``end``).
If ``dtype`` is float32 or float64, we advise adding a small epsilon to
``end`` to avoid floating point rounding errors when comparing against ``end``.
Parameters:
start(float|int|Tensor): Start of interval. The interval includes this
value. If ``end`` is None, the half-open interval is [0, ``start``).
If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
data type int32, int64, float32, float64. Default is 0.
end(float|int|Tensor, optional): End of interval. The interval does not
include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
shape [1], with data type int32, int64, float32, float64. If ``end``
is None, the half-open interval is [0, ``start``). Default is None.
step(float|int|Tensor, optional): Spacing between values. For any out,
it is the istance between two adjacent values, out[i+1] - out[i].
If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
data type int32, int64, float32, float64. Default is 1.
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
output tensor. Supported data types: int32, int64, float32, float64.
If ``dytpe`` is None, the data type is float32. Default is None.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
taken with common difference ``step`` beginning from ``start``. Its
data type is set by ``dtype``.
Raises:
TypeError: If ``dtype`` is not int32, int64, float32, float64.
Examples:
.. code-block:: python
import paddle
out1 = paddle.arange(5)
# [0, 1, 2, 3, 4]
out2 = paddle.arange(3, 9, 2.0)
# [3, 5, 7]
# use 4.999 instead of 5.0 to avoid floating point rounding errors
out3 = paddle.arange(4.999, dtype='float32')
# [0., 1., 2., 3., 4.]
start_var = paddle.to_tensor([3])
out4 = paddle.arange(start_var, 7)
# [3, 4, 5, 6]
"""
if dtype is None:
dtype = 'int64'
if end is None:
end = start
start = 0
return paddle.fluid.layers.range(start, end, step, dtype, name)
def _tril_triu_op(helper):
"""Base op of tril_op and triu_op
"""
op_type = helper.layer_type
x = helper.kwargs.get('x', None)
assert x is not None, 'x cannot be None in {}'.format(op_type)
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
if len(x.shape) < 2:
raise ValueError("x shape in {} must be at least 2-D".format(op_type))
diagonal = helper.kwargs.get('diagonal', 0)
if not isinstance(diagonal, (int, )):
raise TypeError("diagonal in {} must be a python Int".format(op_type))
name = helper.kwargs.get('name', None)
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type="tril_triu",
inputs={"X": x},
attrs={
"diagonal": diagonal,
"lower": True if op_type == 'tril' else False,
},
outputs={"Out": out}, )
return out
def tril(x, diagonal=0, name=None):
r"""
This op returns the lower triangular part of a matrix (2-D tensor) or batch
of matrices :attr:`x`, the other elements of the result tensor are set
to 0. The lower triangular part of the matrix is defined as the elements
on and below the diagonal.
Args:
x (Tensor): The input x which is a Tensor.
Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
diagonal (int, optional): The diagonal to consider, default value is 0.
If :attr:`diagonal` = 0, all elements on and below the main diagonal are
retained. A positive value includes just as many diagonals above the main
diagonal, and similarly a negative value excludes just as many diagonals below
the main diagonal. The main diagonal are the set of indices
:math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
it's data type is the same as x's Tensor.
Raises:
TypeError: diagonal is not a int type.
ValueError: dimension of :attr:`x` is less than 2.
Examples:
.. code-block:: python
import numpy as np
import paddle
data = np.arange(1, 13, dtype="int64").reshape(3,-1)
# array([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
x = paddle.to_tensor(data)
tril1 = paddle.tensor.tril(x)
# array([[ 1, 0, 0, 0],
# [ 5, 6, 0, 0],
# [ 9, 10, 11, 0]])
# example 2, positive diagonal value
tril2 = paddle.tensor.tril(x, diagonal=2)
# array([[ 1, 2, 3, 0],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
# example 3, negative diagonal value
tril3 = paddle.tensor.tril(x, diagonal=-1)
# array([[ 0, 0, 0, 0],
# [ 5, 0, 0, 0],
# [ 9, 10, 0, 0]])
"""
if in_dygraph_mode():
op = getattr(_C_ops, 'tril_triu')
return op(x, 'diagonal', diagonal, "lower", True)
return _tril_triu_op(LayerHelper('tril', **locals()))
def triu(x, diagonal=0, name=None):
r"""
This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
:attr:`x`, the other elements of the result tensor are set to 0.
The upper triangular part of the matrix is defined as the elements on and
above the diagonal.
Args:
x (Tensor): The input x which is a Tensor.
Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
diagonal (int, optional): The diagonal to consider, default value is 0.
If :attr:`diagonal` = 0, all elements on and above the main diagonal are
retained. A positive value excludes just as many diagonals above the main
diagonal, and similarly a negative value includes just as many diagonals below
the main diagonal. The main diagonal are the set of indices
:math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
it's data type is the same as x's Tensor.
Raises:
TypeError: diagonal is not a int type.
ValueError: dimension of :attr:`x` is less than 2.
Examples:
.. code-block:: python
import numpy as np
import paddle
data = np.arange(1, 13, dtype="int64").reshape(3,-1)
# array([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
# example 1, default diagonal
x = paddle.to_tensor(data)
triu1 = paddle.tensor.triu(x)
# array([[ 1, 2, 3, 4],
# [ 0, 6, 7, 8],
# [ 0, 0, 11, 12]])
# example 2, positive diagonal value
triu2 = paddle.tensor.triu(x, diagonal=2)
# array([[0, 0, 3, 4],
# [0, 0, 0, 8],
# [0, 0, 0, 0]])
# example 3, negative diagonal value
triu3 = paddle.tensor.triu(x, diagonal=-1)
# array([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 0, 10, 11, 12]])
"""
if in_dygraph_mode():
op = getattr(_C_ops, 'tril_triu')
return op(x, 'diagonal', diagonal, "lower", False)
return _tril_triu_op(LayerHelper('triu', **locals()))
def meshgrid(*args, **kwargs):
"""
This op takes a list of N tensors as input *args, each of which is 1-dimensional
vector, and creates N-dimensional grids.
Args:
*args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
(N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
**kwargs (optional): Currently, we only accept name in **kwargs
The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
Examples:
.. code-block:: python
import paddle
x = paddle.randint(low=0, high=100, shape=[100])
y = paddle.randint(low=0, high=100, shape=[200])
grid_x, grid_y = paddle.meshgrid(x, y)
print(grid_x.shape)
print(grid_y.shape)
#the shape of res_1 is (100, 200)
#the shape of res_2 is (100, 200)
"""
if len(args) == 1 and isinstance(args[0], (list, tuple)):
args = args[0]
if in_dygraph_mode():
num = len(args)
out = _C_ops.meshgrid(list(args), num)
return out
name = kwargs.get("name", None)
helper = LayerHelper('meshgrid', **locals())
if not isinstance(args, (list, tuple)):
raise TypeError("The type of input args in meshgrid should be list.")
for id, input_ in enumerate(args):
check_dtype(input_.dtype, 'create data type',
['float16', 'float32', 'float64', 'int32', 'int64'],
'meshgrid')
num = len(args)
out = [
helper.create_variable_for_type_inference(dtype=args[i].dtype)
for i in range(num)
]
helper.append_op(
type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
return out
def diagflat(x, offset=0, name=None):
"""
If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.
The argument ``offset`` controls the diagonal offset.
If ``offset`` = 0, it is the main diagonal.
If ``offset`` > 0, it is superdiagonal.
If ``offset`` < 0, it is subdiagonal.
Args:
x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, a square matrix. The output data type is the same as input data type.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([1, 2, 3])
y = paddle.diagflat(x)
print(y.numpy())
# [[1 0 0]
# [0 2 0]
# [0 0 3]]
y = paddle.diagflat(x, offset=1)
print(y.numpy())
# [[0 1 0 0]
# [0 0 2 0]
# [0 0 0 3]
# [0 0 0 0]]
y = paddle.diagflat(x, offset=-1)
print(y.numpy())
# [[0 0 0 0]
# [1 0 0 0]
# [0 2 0 0]
# [0 0 3 0]]
.. code-block:: python
import paddle
x = paddle.to_tensor([[1, 2], [3, 4]])
y = paddle.diagflat(x)
print(y.numpy())
# [[1 0 0 0]
# [0 2 0 0]
# [0 0 3 0]
# [0 0 0 4]]
y = paddle.diagflat(x, offset=1)
print(y.numpy())
# [[0 1 0 0 0]
# [0 0 2 0 0]
# [0 0 0 3 0]
# [0 0 0 0 4]
# [0 0 0 0 0]]
y = paddle.diagflat(x, offset=-1)
print(y.numpy())
# [[0 0 0 0 0]
# [1 0 0 0 0]
# [0 2 0 0 0]
# [0 0 3 0 0]
# [0 0 0 4 0]]
"""
padding_value = 0
if in_dygraph_mode():
if len(x.shape) == 1:
return _C_ops.diag_v2(x, "offset", offset, "padding_value",
padding_value)
else:
y, _ = _C_ops.flatten_contiguous_range(x, "start_axis", 0,
"stop_axis", -1)
return _C_ops.diag_v2(y, "offset", offset, "padding_value",
padding_value)
check_type(x, 'x', (Variable), 'diagflat')
check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
'diagflat')
check_type(offset, 'offset', (int), 'diagflat')
helper = LayerHelper("diagflat", **locals())
out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
out1_shape = helper.create_variable_for_type_inference(x.dtype)
out2 = helper.create_variable_for_type_inference(dtype=x.dtype)
if len(x.shape) == 1:
helper.append_op(
type='diag_v2',
inputs={'X': x},
outputs={'Out': out2},
attrs={'offset': offset,
'padding_value': padding_value})
else:
helper.append_op(
type='flatten_contiguous_range',
inputs={'X': x},
outputs={'Out': out1,
'XShape': out1_shape},
attrs={'start_axis': 0,
'stop_axis': -1})
out1.stop_gradient = True
helper.append_op(
type='diag_v2',
inputs={'X': out1},
outputs={'Out': out2},
attrs={'offset': offset,
'padding_value': padding_value})
out2.stop_gradient = True
return out2
def diag(x, offset=0, padding_value=0, name=None):
"""
If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.
The argument ``offset`` controls the diagonal offset:
If ``offset`` = 0, it is the main diagonal.
If ``offset`` > 0, it is superdiagonal.
If ``offset`` < 0, it is subdiagonal.
Args:
x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, a square matrix or a vector. The output data type is the same as input data type.
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
x = paddle.to_tensor([1, 2, 3])
y = paddle.diag(x)
print(y.numpy())
# [[1 0 0]
# [0 2 0]
# [0 0 3]]
y = paddle.diag(x, offset=1)
print(y.numpy())
# [[0 1 0 0]
# [0 0 2 0]
# [0 0 0 3]
# [0 0 0 0]]
y = paddle.diag(x, padding_value=6)
print(y.numpy())
# [[1 6 6]
# [6 2 6]
# [6 6 3]]
.. code-block:: python
import paddle
paddle.disable_static()
x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
y = paddle.diag(x)
print(y.numpy())
# [1 5]
y = paddle.diag(x, offset=1)
print(y.numpy())
# [2 6]
y = paddle.diag(x, offset=-1)
print(y.numpy())
# [4]
"""
if in_dygraph_mode():
return _C_ops.diag_v2(x, "offset", offset, "padding_value",
padding_value)
check_type(x, 'x', (Variable), 'diag_v2')
check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
'diag_v2')
check_type(offset, 'offset', (int), 'diag_v2')
check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
if len(x.shape) != 1 and len(x.shape) != 2:
raise ValueError(
"The dimension of input x must be either 1 or 2, but received {}".
format(len(x.shape)))
helper = LayerHelper("diag_v2", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='diag_v2',
inputs={'X': x},
outputs={'Out': out},
attrs={'offset': offset,
'padding_value': padding_value})
out.stop_gradient = True
return out
def empty(shape, dtype=None, name=None):
"""