We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
下面代码会触发非法指令异常。
import paddle model = paddle.nn.Conv3DTranspose(9, 1, kernel_size=[8, 8, 8], stride=[ 4, 3, 1], padding=[8, 0, 8], dilation=[2, 1, 2]) tensor = paddle.rand([9, 9, 9, 9, 9]) model(tensor)
报错信息如下
W0115 10:52:53.554724 2022101 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 9.0, Driver API Version: 12.6, Runtime API Version: 12.3 W0115 10:52:53.555317 2022101 gpu_resources.cc:164] device: 0, cuDNN Version: 9.0. Traceback (most recent call last): File "/home/jwnhy/gpu_fuzz/gen/poc4.py", line 7, in <module> model(tensor) File "/home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/nn/layer/layers.py", line 1426, in __call__ return self.forward(*inputs, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/nn/layer/conv.py", line 1219, in forward out = F.conv3d_transpose( ^^^^^^^^^^^^^^^^^^^ File "/home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/nn/functional/conv.py", line 1723, in conv3d_transpose pre_bias = _C_ops.conv3d_transpose( ^^^^^^^^^^^^^^^^^^^^^^^^ OSError: (External) CUDNN error(5000), CUDNN_STATUS_EXECUTION_FAILED. [Hint: Please search for the error code(5000) on website (https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnStatus_t) to get Nvidia's official solution and advice about CUDNN Error.] (at ../paddle/phi/kernels/gpudnn/conv_cudnn_v7.h:834)
compute-sanitizer 追踪结果
========= Illegal instruction ========= at sm90_xmma_dgrad_implicit_gemm_indexed_f32f32_tf32f32_f32_nhwckrsc_nhwc_tilesize256x64x32_warpgroupsize1x1x1_g1_strided_execute_kernel__5x_cudnn+0x6bf0 ========= by thread (0,0,0) in block (8,0,0) ========= Saved host backtrace up to driver entry point at kernel launch time ========= Host Frame: [0x2dfec3] ========= in /lib/x86_64-linux-gnu/libcuda.so.1 ========= Host Frame: [0x1cb78b8] ========= in /home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/base/../../../../libcudnn_engines_precompiled.so.9.3.0 ========= Host Frame: [0x1d1b4cf] ========= in /home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/base/../../../../libcudnn_engines_precompiled.so.9.3.0 ========= Host Frame: [0x12ed011] ========= in /home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/base/../../../../libcudnn_engines_precompiled.so.9.3.0 ========= Host Frame: [0x145a89f] ========= in /home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/base/../../../../libcudnn_engines_precompiled.so.9.3.0 ========= Host Frame: [0x101f70c] ========= in /home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/base/../../../../libcudnn_engines_precompiled.so.9.3.0 ========= Host Frame: [0x101fe09] ========= in /home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/base/../../../../libcudnn_engines_precompiled.so.9.3.0 ========= Host Frame: [0x4a33ad] ========= in /home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/base/../../../../libcudnn_engines_precompiled.so.9.3.0 ========= Host Frame: [0x4a3888] ========= in /home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/base/../../../../libcudnn_engines_precompiled.so.9.3.0 ========= Host Frame: [0x4b835b] ========= in /home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/base/../../../../libcudnn_engines_precompiled.so.9.3.0 ========= Host Frame:cudnn::backend::execute(cudnnContext*, cudnn::backend::ExecutionPlan const&, cudnn::backend::VariantPack&) [0x134c78] ========= in /home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/base/../../../../libcudnn_graph.so.9.3.0 ========= Host Frame: [0x36351] ========= in /home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/base/../../../../libcudnn_cnn.so.9.3.0 ========= Host Frame: [0x1f9fa] ========= in /home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/base/../../../../libcudnn_cnn.so.9.3.0 ========= Host Frame:cudnnConvolutionBackwardData [0x4262f] ========= in /home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/base/../../../../libcudnn_cnn.so.9.3.0 ========= Host Frame:std::_Function_handler<void (void*), phi::ConvRunner<float, (phi::ConvKind)2>::Apply(phi::GPUContext const&, phi::ConvArgsBase<cudnnContext*, cudnnDataType_t> const&, phi::SearchResult<cudnnConvolutionBwdDataAlgo_t> const&, float const*, float const*, float*, int, int, int, int, unsigned long, phi::DnnWorkspaceHandle*, bool)::{lambda(void*)#1}>::_M_invoke(std::_Any_data const&, void*&&) [0x5274427] ========= in /home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/base/../libs/libphi_core.so ========= Host Frame:void phi::ConvTransposeRawGPUDNNKernel<float, phi::GPUContext>(phi::GPUContext const&, phi::DenseTensor const&, phi::DenseTensor const&, std::vector<int, std::allocator<int> > const&, std::vector<int, std::allocator<int> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, int, std::vector<int, std::allocator<int> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, phi::DenseTensor*) [0x52e77b6] ========= in /home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/base/../libs/libphi_core.so ========= Host Frame:paddle::experimental::conv3d_transpose(paddle::Tensor const&, paddle::Tensor const&, std::vector<int, std::allocator<int> > const&, std::vector<int, std::allocator<int> > const&, std::vector<int, std::allocator<int> > const&, std::vector<int, std::allocator<int> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, int, std::vector<int, std::allocator<int> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) [0x2d13ab6] ========= in /home/jwnhy/miniconda3/envs/gpu-paddle/lib/python3.12/site-packages/paddle/base/../libs/libphi_core.so ========= Host Frame:conv3d_transpose_ad_func(paddle::Tensor const&, paddle::Tensor const&, std::vector<int, std::allocator<int> >, std::vector<int, std::allocator<int> >, std::vector<int, std::allocator<int> >, std::vector<int, std::allocator<int> >, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, int, std::vector<int, std::allocator<int> >, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) [0x7012611]
环境如下
[pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.3.4.1 [pip3] nvidia-cuda-cupti-cu12==12.3.101 [pip3] nvidia-cuda-nvrtc-cu12==12.3.107 [pip3] nvidia-cuda-runtime-cu12==12.3.101 [pip3] nvidia-cudnn-cu12==9.0.0.312 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.19.3 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.4.127 [conda] numpy 1.26.4 pypi_0 pypi [conda] nvidia-cublas-cu12 12.3.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.3.101 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.3.107 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.3.101 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.0.0.312 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-nccl-cu12 2.19.3 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
设备是H100
No response
The text was updated successfully, but these errors were encountered:
感谢反馈,我们排查下问题。
Sorry, something went wrong.
jerrywgz
liym27
No branches or pull requests
bug描述 Describe the Bug
下面代码会触发非法指令异常。
报错信息如下
compute-sanitizer 追踪结果
环境如下
设备是H100
其他补充信息 Additional Supplementary Information
No response
The text was updated successfully, but these errors were encountered: