Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【PaddlePaddle Hackathon 2】71、为 PaddleScience 新增支持随机/Quasi采样法 #40

Closed
TCChenlong opened this issue Mar 8, 2022 · 0 comments

Comments

@TCChenlong
Copy link

TCChenlong commented Mar 8, 2022

(此 ISSUE 为 PaddlePaddle Hackathon 第二期活动的任务 ISSUE,更多详见 【PaddlePaddle Hackathon 第二期】任务总览

【任务内容】

  • 传统方法是画网格方法,而PINN方法无需画网格,可以用随机采样法,目前paddlescience需要支持随机/Quasi采样法

  • 任务难度:中等

【提交内容】

【技术要求】

  • 熟悉 Paddle,
  • 熟练掌握 Python,了解numpy等

【参考内容】

  1. [https://github.com/maziarraissi/PINNs/blob/master/main/continuous_time_identification%20(Navier-Stokes)/NavierStokes.py](https://github.com/maziarraissi/PINNs/blob/master/main/continuous_time_identification (Navier-Stokes)/NavierStokes.py)

  2. Nvidia Modulus sample_boundary()/sample_interior()方法的实现,参考:https://developer.nvidia.com/modulus-downloads

  3. DeepXDE

    https://github.com/lululxvi/deepxde/blob/master/deepxde/geometry/timedomain.py

    https://github.com/lululxvi/deepxde/blob/master/deepxde/geometry/sampler.py

【答疑交流】

  • 如果在开发中对于上述任务有任何问题,欢迎在本 ISSUE 下留言交流。
  • 对于开发中的共性问题,在活动过程中,会定期组织答疑,请大家关注官网&QQ群的通知,及时参与
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants