-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathtrain.py
230 lines (189 loc) · 8.41 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import argparse
import collections
import datetime
import imp
import os
import pickle
import time
import lmdb
import ipdb
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from tensorboardX import SummaryWriter
from torch.autograd import Variable
from torch.nn.modules.module import Module
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from dataloader.dataset import ImagnetVIDDataset
from network.SiamRPN import *
from utils.AverageMeter import AverageMeter
from utils.Logger import Logger
from utils.loss import rpn_cross_entropy_balance, rpn_smoothL1
################################################
# This python file contains four parts:
#
# Part 1. Argument Parser
# Part 2. configurations:
# Part 2-1. Basic configuration
# Part 2-2. dataloader instantiation
# Part 2-3. log configuration
# Part 2-4. configurations for loss function, SiamRPN++ network, and optimizer
# Part 3. 'train' function
# Part 4. 'main' function
################################################
# Part 1. Argument Parser
parser = argparse.ArgumentParser(description='train_SiamRPN++')
parser.add_argument("--exp", type=str, default="test", help="experiment")
parser.add_argument("--data_dir", type=str,
default="./VID_2015_RPN++", help="lmdb_dir")
parser.add_argument("--batch_size", type=int, default=8, help="batch_size")
parser.add_argument("--num_workers", type=int, default=4, help="num_workers")
parser.add_argument('--gpu', type=str, default="0,1,2,3", help='choose GPU')
#
parser.add_argument("--training_pairs_with_annotations",
type=str, default="", help="training_pairs_with_annotations")
parser.add_argument("--random_shift_factor", type=int,
default=32, help="random_shift_factor")
parser.add_argument("--examplar_img_size", type=int,
default=127, help="examplar_img_size")
parser.add_argument("--search_region_img_size", type=int,
default=255, help="search_region_img_size")
parser.add_argument("--response_map_size", type=int,
default=25, help="response_map_size")
args = parser.parse_args()
# Part 2. configurations
# Part 2-1. Basic configuration
basic_configs = collections.OrderedDict()
basic_configs['serial_number'] = args.exp
basic_configs['learning_rate'] = 1e-3
basic_configs['num_epochs'] = 10000
basic_configs["lr_protocol_4_warm_up"] = [(5, 1e-3)]
basic_configs["lr_protocol_after_warm_up"] = [
(epo, 0.005 * 0.85 ** (epo - 6)) for epo in range(6, 21)]
basic_configs["lr_protocol"] = basic_configs["lr_protocol_4_warm_up"] + \
basic_configs["lr_protocol_after_warm_up"]
basic_configs["display_step"] = 10
lr_protocol = basic_configs["lr_protocol"]
# Part 2-2. dataloader instantiation
dataloader_configs = collections.OrderedDict()
dataloader_configs['batch_size'] = args.batch_size
dataloader_configs['num_workers'] = args.num_workers
print '==> training pair url loading......'
#load_file = open(args.training_pairs_with_annotations, 'rb')
#dataloader_configs['training_pairs_with_annotations'] = pickle.load(load_file)
print '==> loading finished......'
# TODO
dataloader_configs['transform'] = transforms.Compose([transforms.ToTensor()])
dataloader_configs['random_shift_factor'] = args.random_shift_factor
dataloader_configs['examplar_img_size'] = args.examplar_img_size
dataloader_configs['search_region_img_size'] = args.search_region_img_size
dataloader_configs['response_map_size'] = args.response_map_size
'''
train_set = TrainingLoader(dataloader_configs)
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=dataloader_configs['batch_size'], shuffle=True, num_workers=dataloader_configs['num_workers'])
'''
# TODO
# open lmdb
#ipdb.set_trace()
data_dir = args.data_dir
db = lmdb.open(data_dir + '.lmdb', readonly=True, map_size=int(200e9))
# create dataset
# -----------------------------------------------------------------------------------------------------
meta_data_path = os.path.join(data_dir, "meta_data.pkl")
meta_data = pickle.load(open(meta_data_path, 'rb'))
all_videos = [x[0] for x in meta_data]
#data_dir = "." + data_dir[15:]
train_dataset = ImagnetVIDDataset(
db, all_videos, data_dir, dataloader_configs['transform'], dataloader_configs['transform'])
train_loader = DataLoader(train_dataset, batch_size=dataloader_configs['batch_size'], shuffle=True,
pin_memory=True, num_workers=dataloader_configs['num_workers'], drop_last=True)
# Part 2-3. log configuration
exp_dir = os.path.join('./experimental_results', args.exp)
exp_log_dir = os.path.join(exp_dir, "log")
if not os.path.exists(exp_log_dir):
os.makedirs(exp_log_dir)
exp_visual_dir = os.path.join(exp_dir, "visual")
if not os.path.exists(exp_visual_dir):
os.makedirs(exp_visual_dir)
exp_ckpt_dir = os.path.join(exp_dir, "checkpoints")
if not os.path.exists(exp_ckpt_dir):
os.makedirs(exp_ckpt_dir)
now_str = datetime.datetime.now().__str__().replace(' ', '_')
writer_path = os.path.join(exp_visual_dir, now_str)
writer = SummaryWriter(writer_path)
logger_path = os.path.join(exp_log_dir, now_str + ".log")
logger = Logger(logger_path).get_logger()
# TODO
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
logger.info("basic configuration settings: {}".format(basic_configs))
#logger.info("dataloader configuration settings: {}".format(dataloader_configs))
# Part 2-4. configurations for loss function, SiamRPN++ network, and optimizer
# TODO
loss_function = nn.CrossEntropyLoss()
training_loss = AverageMeter()
net = SiamRPN()
#net = net.cuda()
net = torch.nn.DataParallel(
net, device_ids=[int(x) for x in args.gpu.split(',')]).cuda()
optimizer = torch.optim.SGD(
net.parameters(), lr=basic_configs['learning_rate'], momentum=0.9, weight_decay=5e-4)
# Part 3. 'train' function
def train_function(epoch):
training_loss.reset()
net.train()
lr = next((lr for (max_epoch, lr) in lr_protocol if max_epoch >
epoch), lr_protocol[-1][1])
for param_group in optimizer.param_groups:
param_group['lr'] = lr
logger.info("set learning rate to: {}".format(lr))
for idx, (examplar_img, search_region_img, regression_target, conf_target) in enumerate(train_loader):
#
# _BATCH_SIZE = len(examplar_img) delete
examplar_img = examplar_img.cuda()
search_region_img = search_region_img.cuda()
regression_target = regression_target.cuda()
conf_target = conf_target.cuda()
optimizer.zero_grad()
# TODO
# fused_cls_prediction, fused_regression_prediction = net(examplar_img, search_region_img, _BATCH_SIZE)
fused_cls_prediction, fused_regression_prediction = net(
examplar_img, search_region_img)
# ipdb.set_trace()
pred_conf = fused_cls_prediction.reshape(
-1, 2, 5 * 25 * 25).permute(0, 2, 1)
pred_offset = fused_regression_prediction.reshape(
-1, 4, 5 * 25 * 25).permute(0, 2, 1)
# ipdb.set_trace()
cls_loss = rpn_cross_entropy_balance(
pred_conf, conf_target, 16, 48, ohem_pos=False, ohem_neg=False)
reg_loss = rpn_smoothL1(
pred_offset, regression_target, conf_target, 16, ohem=False)
batch_loss = cls_loss + 5 * reg_loss
batch_loss.backward()
optimizer.step()
training_loss.update(batch_loss.item())
if (idx + 1) % basic_configs["display_step"] == 0:
logger.info(
"==> Iteration [{}][{}/{}]:".format(epoch + 1, idx + 1, len(train_loader)))
logger.info("current batch loss: {}".format(
batch_loss.item()))
logger.info("average loss: {}".format(
training_loss.avg))
writer.add_scalars("loss", {"training_loss": training_loss.avg}, epoch + 1)
# Part 4. 'main' function
if __name__ == '__main__':
logger.info("training status: ")
for epoch in range(basic_configs['num_epochs']):
logger.info("Begin training epoch {}".format(epoch + 1))
train_function(epoch)
net_checkpoint_name = args.exp + "_net_epoch" + str(epoch + 1)
net_checkpoint_path = os.path.join(exp_ckpt_dir, net_checkpoint_name)
net_state = {"epoch": epoch + 1,
"network": net.module.state_dict()}
torch.save(net_state, net_checkpoint_path)