forked from inQWIRE/QWIRE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Composition.v
200 lines (174 loc) · 6.41 KB
/
Composition.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
Require Export Contexts.
Require Export HOASCircuits.
Require Export HOASLib.
Require Export DBCircuits.
Require Export QuantumLib.Quantum.
Require Export Denotation.
Fact denote_compose : forall safe w (c : Circuit w) (Γ : Ctx),
Γ ⊢ c :Circ ->
forall w' (f : Pat w -> Circuit w') (Γ0 Γ1 Γ1' Γ01 : Ctx),
Γ1 ⊢ f :Fun ->
Γ1' == Γ1 ∙ Γ ->
Γ01 == Γ0 ∙ Γ1 ->
denote_circuit safe (HOASCircuits.compose c f) Γ0 Γ1'
= compose_super
(denote_circuit safe (f (add_fresh_pat w Γ1)) Γ0 (add_fresh_state w Γ1))
(denote_circuit safe c Γ01 Γ).
Proof.
intros safe w c Γ TP.
dependent induction TP.
- intros w' f Γ0 Γ1 Γ1' Γ01 WT pf_merge1 pf_merge2.
simpl.
unfold compose_super.
unfold denote_circuit.
simpl.
unfold pad.
rewrite (ctx_wtype_size w p Γ) by easy.
rewrite Nat.add_sub.
rewrite size_fresh_ctx.
destruct pf_merge1 as [V1 M1].
replace (size_ctx Γ1') with (size_octx Γ1') by easy.
rewrite M1 in *.
rewrite size_octx_merge by easy.
simpl.
rewrite (ctx_wtype_size w p Γ t).
admit. (* property about f being parametric *)
(* ⟨ Γ0 | Γ1 ⋓ Γ2 ⊩ f p ⟩
= ⟨ Γ0 | fresh_state Γ2 ⊩ f (fresh_pat w Γ2) ⟩ ∘ ⟨ Γ1 ⊩ p ⟩
*)
- intros w' h Γ3 Γ2 Γ3' Γ03 WT pf_merge1 pf_merge2.
replace (HOASCircuits.compose (gate g p1 f) h)
with (gate g p1 (fun p2 => HOASCircuits.compose (f p2) h))
by auto.
repeat rewrite denote_gate_circuit; fold_denotation.
set (p2 := process_gate_pat g p1 Γ3').
set (Γ3'' := process_gate_state g p1 Γ3').
(*
evar (Γ4 : OCtx).
set (Γ4' := process_gate_state g p1 Γ1').
assert (pf2 : Γ2' == Γ2 ∙ Γ) by admit.
assert (H_p2 : Γ2 ⊢ process_gate_pat g p1 Γ3' :Pat) by admit.
assert (H_h : Γ3 ⊢ h :Fun) by auto.
assert (pf3 : Γ3'' == Γ3 ∙ Γ2') by admit.
specialize (H Γ2 Γ2' (process_gate_pat g p1 Γ3') pf2 H_p2 w' h Γ0 Γ3 Γ3'' H_h pf3).
fold p2 in H.
*)
(* rewrite H. *)
admit (* sort of close *).
- admit.
Admitted.
(**********************)
(* Composition lemmas *)
(**********************)
Theorem inSeq_correct : forall W1 W2 W3 (g : Box W2 W3) (f : Box W1 W2) (safe : bool),
Typed_Box g -> Typed_Box f ->
denote_box safe (inSeq f g) =
compose_super (denote_box safe g) (denote_box safe f).
Proof.
intros W1 W2 W3 g f safe types_g types_f.
autounfold with den_db; simpl.
destruct f as [f].
destruct g as [g].
autounfold with den_db; simpl.
destruct (add_fresh W1 []) as [p1 Γ1] eqn:E1. simpl.
destruct (add_fresh W2 []) as [p2 Γ2] eqn:E2. simpl.
rewrite add_fresh_split in E1, E2.
inversion E1. inversion E2.
assert (S1 : ⟦Γ1⟧ = ⟦W1⟧).
rewrite <- H1. rewrite size_fresh_ctx; auto.
assert (S2 : ⟦Γ2⟧ = ⟦W2⟧).
rewrite <- H3. rewrite size_fresh_ctx; auto.
rewrite H0, H1, H2, H3.
replace 0%nat with (⟦[]:Ctx⟧:nat) by auto.
replace (size_wtype W1) with (⟦Γ1⟧).
replace (size_wtype W2) with (⟦Γ2⟧).
specialize denote_compose as DC.
unfold denote_circuit in DC.
rewrite DC with (Γ1 := []).
simpl.
unfold compose_super.
rewrite H2, H3.
reflexivity.
* apply types_f. rewrite <- H0, <- H1. apply add_fresh_typed_empty. rewrite add_fresh_split. easy.
* unfold Typed_Box in types_g. intros Γ Γ' p pf wf_p.
solve_merge.
apply types_g. monoid. rewrite merge_nil_r. auto.
* solve_merge.
* split; [validate|monoid].
Qed.
Fact inPar_correct : forall W1 W1' W2 W2' (f : Box W1 W1') (g : Box W2 W2') (safe : bool)
(ρ1 : Square (2^⟦W1⟧)) (ρ2 : Square (2^⟦W2⟧)),
Typed_Box f -> Typed_Box g ->
WF_Matrix ρ1 ->
WF_Matrix ρ2 ->
denote_box safe (inPar f g) (ρ1 ⊗ ρ2)%M =
(denote_box safe f ρ1 ⊗ denote_box safe g ρ2)%M.
Proof.
(*
intros W1 W1' W2 W2' f g safe ρ1 ρ2 types_f types_g mixed_ρ1 mixed_ρ2.
destruct f as [f].
destruct g as [g].
repeat (autounfold with den_db; simpl).
set (p_1 := add_fresh_pat W1 []).
set (Γ_1 := add_fresh_state W1 []).
set (p_2 := add_fresh_pat W2 Γ_1).
set (Γ_2 := add_fresh_state W2 Γ_1).
assert (Γ_1 ⊢ p_1 :Pat) by apply fresh_state_empty_types_fresh_pat.
assert (Γ_2 ⊢ p_2 :Pat) by admit (* need a vaiant of fresh_pat_typed *).
replace 0%nat with (⟦[]:Ctx⟧) by auto.
replace (size_wtype W1 + size_wtype W2)%nat with (⟦Γ_2⟧).
replace (size_wtype W1) with (⟦Γ_1⟧).
replace (size_wtype W2) with (⟦add_fresh_state W2 []⟧).
specialize denote_compose as DC. unfold denote_circuit in DC.
rewrite DC with (Γ1' := Γ_2) (Γ1 := Γ_2) (Γ := Γ_1).
set (Γ_3 := pat_to_ctx (fresh_pat W1' Γ_2)).
rewrite DC with (Γ1' := fresh_state W1' Γ_2) (Γ1 := Γ_3) (Γ := Γ_2). clear DC.
autounfold with den_db.
repeat rewrite merge_nil_l.
(*
repeat rewrite denote_tensor.
Search (⟨ _ | _ ⊩ output _ ⟩).
rewrite denote_output.
autorewrite with proof_db.*)
admit (* stuck *).
* apply types_g; auto.
* intros.
destruct H1. econstructor. reflexivity.
econstructor. 4: apply H2. assumption.
rewrite merge_comm in pf_merge. apply pf_merge.
unfold Γ_3.
Search (pat_to_ctx) fresh_pat.
admit (* need a variant of fresh_pat_typed *).
* unfold Γ_3.
assert (valid_Γ_2 : is_valid Γ_2) by admit.
generalize (fresh_state_decompose W1' Γ_2 valid_Γ_2); intros assertion.
solve_merge.
rewrite pf_merge. monoid.
* apply types_f; auto.
* intros. eapply compose_typing. apply types_g. apply H0.
intros. econstructor. reflexivity. econstructor.
destruct H3. assumption.
2: apply H2. 2: apply H4.
rewrite merge_comm. destruct H3. apply pf_merge.
destruct H1; constructor; [|rewrite merge_comm]; easy.
* admit (* this is not true... *).
* rewrite size_octx_fresh; auto. validate.
* unfold Γ_1. rewrite size_octx_fresh. auto. validate.
* unfold Γ_2, Γ_1. repeat rewrite size_octx_fresh. auto.
validate. validate.
*)
Admitted.
Lemma HOAS_Equiv_inSeq : forall w1 w2 w3 (c1 c1' : Box w1 w2) (c2 c2' : Box w2 w3),
Typed_Box c1 -> Typed_Box c1' -> Typed_Box c2 -> Typed_Box c2' ->
c1 ≡ c1' -> c2 ≡ c2' -> (c2 · c1) ≡ (c2' · c1').
Proof.
intros w1 w2 w3 c1 c1' c2 c2' T1 T1' T2 T2' E1 E2.
intros ρ b Mρ.
simpl_rewrite inSeq_correct; trivial.
simpl_rewrite inSeq_correct; trivial.
unfold compose_super.
rewrite E1 by easy.
rewrite E2.
easy.
apply WF_denote_box; easy.
Qed.