forked from inQWIRE/QWIRE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Deutsch.v
224 lines (197 loc) · 7.2 KB
/
Deutsch.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
Require Import QuantumLib.Prelim.
Require Import Monad.
Require Import QuantumLib.Matrix.
Require Import HOASCircuits.
Require Import HOASExamples.
Require Import QuantumLib.Complex.
Require Import TypeChecking.
Require Import Denotation.
Require Import Composition.
Require Import DBCircuits.
Set Bullet Behavior "Strict Subproofs".
Global Unset Asymmetric Patterns.
Delimit Scope matrix_scope with M.
Delimit Scope circ_scope with qc.
Close Scope circ_scope.
Open Scope matrix_scope.
Open Scope C_scope.
Lemma size_octx_0 : forall Γ, Γ = ∅ -> size_octx Γ = 0%nat.
Proof.
intros.
subst.
reflexivity.
Qed.
(* With edge cases that break monoid *)
Ltac solve_merge' :=
match goal with
| [ |- ?Γ == ∅ ∙ ?Γ2] => split; [validate|rewrite merge_nil_l; easy]
| [ |- ?Γ == ?Γ1 ∙ ∅] => split; [validate|rewrite merge_nil_r; easy]
| _ => solve_merge
end.
Ltac compose_denotations :=
match goal with
| [ |- context[denote_db_circuit ?safe ?n_Γ0 ?n_Γ1' (hoas_to_db ?Γ1' (HOASCircuits.compose ?c ?f))] ]
=> let Γ1 := fresh "Γ1" in evar (Γ1 : Ctx);
(* instantiate Γ1 *)
assert (pf_f : Γ1 ⊢ f :Fun) by (unfold Γ1; type_check);
let Γ := fresh "Γ" in evar (Γ : Ctx);
(* instantiate Γ *)
assert (pf_merge : Valid Γ1' == Γ1 ∙ Γ) by (unfold Γ, Γ1; solve_merge');
let pf_c := fresh "pf_c" in
assert (pf_c : Γ ⊢ c :Circ); [ |
let Γ0 := fresh "Γ0" in evar (Γ0 : Ctx);
let Γ01 := fresh "Γ01" in evar (Γ01 : Ctx);
let DC := fresh "DC" in
specialize (@denote_compose safe _ c Γ pf_c _ f Γ0 Γ1 Γ1' Γ01
pf_f pf_merge) as DC;
unfold denote_circuit in DC;
assert (size_Γ0 : size_ctx Γ0 = n_Γ0);
unfold Γ1, Γ, Γ0 in *
]
end.
(*
Ltac compose_denotations :=
match goal with
| [ |- context[denote_db_circuit ?safe ?n_Γ0 ?n_Γ1' (hoas_to_db ?Γ1' (compose ?c ?f))] ]
=> let Γ1 := fresh "Γ1" in evar (Γ1 : OCtx);
(* instantiate Γ1 *)
assert (pf_f : Γ1 ⊢ f :Fun) by (unfold Γ1; type_check);
let Γ := fresh "Γ" in evar (Γ : OCtx);
(* instantiate Γ *)
assert (pf_merge : Γ1' == Γ1 ∙ Γ) by (unfold Γ, Γ1; solve_merge);
let pf_c := fresh "pf_c" in
assert (pf_c : Γ ⊢ c :Circ); [ |
let Γ0 := fresh "Γ0" in evar (Γ0 : OCtx);
let DC := fresh "DC" in
specialize (@denote_compose safe _ c Γ pf_c _ f Γ0 Γ1 Γ1' pf_f pf_merge)
as DC;
unfold denote_circuit in DC;
assert (size_Γ0 : size_octx Γ0 = n_Γ0);
unfold Γ1, Γ, Γ0 in *
]
end.
*)
(* U (|x⟩⊗|y⟩) = |x⟩⊗|f x ⊕ y⟩
If f is constant, deutsch U returns 0
If f is balanced, deutsch U returns 1
*)
Section Deutsch.
Definition M_balanced_neg : Matrix 4 4 :=
list2D_to_matrix [[C0;C1;C0;C0]
;[C1;C0;C0;C0]
;[C0;C0;C1;C0]
;[C0;C0;C0;C1]].
Definition toUnitary (f : bool -> bool) : Matrix 4 4 :=
match f true, f false with
| true, true => (* constant true *) I 2 ⊗ σx
| false, false => (* constant false *) I 4
| true, false => (* balanced id *) cnot
| false, true => (* balanced flip *) M_balanced_neg
end.
Lemma toUnitary_unitary : forall f, WF_Unitary (toUnitary f).
Proof.
intros.
unfold toUnitary, WF_Unitary.
destruct (f true), (f false); restore_dims; Qsimpl.
all: split; auto with wf_db.
replace (σx × σx) with (I 2) by solve_matrix. rewrite id_kron. reflexivity.
solve_matrix.
unfold M_balanced_neg.
apply WF_list2D_to_matrix.
easy.
intros li H.
repeat (destruct H; subst; trivial).
unfold M_balanced_neg.
solve_matrix.
Qed.
Hint Unfold apply_box : den_db.
Lemma deutsch_constant : forall (f : bool -> bool)
(U : Box (Qubit ⊗ Qubit)%qc (Qubit ⊗ Qubit)%qc),
Typed_Box U ->
(f = fun _ => true) \/ (f = fun _ => false) ->
(forall ρ, ⟦U⟧ ρ = (toUnitary f) × ρ × (toUnitary f)†) ->
⟦deutsch U⟧ (I 1) = ∣0⟩⟨0∣.
Proof.
intros f U pf_U pf_constant H_U.
(* simplify definition of deutsch U *)
repeat (simpl; autounfold with den_db).
Msimpl.
compose_denotations.
- unfold Γ. apply pf_U.
apply types_pair with (Γ1 := Valid [Some Qubit])
(Γ2 := Valid [None ; Some Qubit]);
[ validate | reflexivity
| type_check; constructor
| type_check; repeat constructor
].
- instantiate (1:=[]). easy.
- simpl in DC. rewrite DC. clear DC.
repeat (simpl; autounfold with den_db).
2: unfold Γ01; solve_merge'.
unfold Γ01. simpl.
(* rewrite by the semantics of U *)
rewrite denote_db_unbox in H_U. simpl in H_U.
repeat (simpl in H_U; autounfold with den_db in H_U).
unfold denote_circuit in H_U. simpl in H_U.
rewrite H_U.
(* simplify the goal *)
destruct (toUnitary_unitary f) as [WFU UU]; simpl in WFU.
Qsimpl.
(* if f is constant, then it is either always true or false *)
destruct pf_constant as [pf_true | pf_false].
+ (* f = fun _ => true *)
subst. unfold toUnitary.
solve_matrix.
(* Arithmetic: 2 * 2 * 1/√2 * 2 * 1/2 * 1/2 * 1/√2 = 1 *)
C_field.
+ (* f = fun _ => false *)
subst. unfold toUnitary.
solve_matrix.
(* Arithmetic: 2 * 2 * 1/√2 * 2 * 1/2 * 1/2 * 1/√2 = 1 *)
C_field.
Qed.
Lemma deutsch_balanced : forall (f : bool -> bool) (U : Box (Qubit ⊗ Qubit)%qc (Qubit ⊗ Qubit)%qc),
Typed_Box U ->
(f = fun x => x) \/ (f = fun x => negb x) ->
(forall ρ, ⟦U⟧ ρ = (toUnitary f) × ρ × (toUnitary f)†) ->
⟦deutsch U⟧ (I 1) = ∣1⟩⟨1∣.
Proof.
intros f U pf_U pf_constant H_U.
(* simplify definition of deutsch U *)
matrix_denote.
Qsimpl.
compose_denotations.
- unfold Γ. apply pf_U.
apply types_pair with (Γ1 := Valid [Some Qubit])
(Γ2 := Valid [None ; Some Qubit]);
[ validate | reflexivity
| type_check; constructor
| type_check; repeat constructor
].
- instantiate (1:=[]). easy.
- simpl in DC. rewrite DC. clear DC.
repeat (simpl; autounfold with den_db).
2: unfold Γ01; solve_merge'.
unfold Γ01. simpl.
(* rewrite by the semantics of U *)
rewrite denote_db_unbox in H_U. simpl in H_U.
repeat (simpl in H_U; autounfold with den_db in H_U).
unfold denote_circuit in H_U. simpl in H_U.
rewrite H_U.
(* simplify the goal *)
destruct (toUnitary_unitary f) as [WFU UU]; simpl in WFU.
Qsimpl.
(* if f is balanced, then it is either always identity or negation *)
destruct pf_constant as [pf_id | pf_neg].
+ (* f = fun x => x *)
subst. unfold toUnitary.
solve_matrix.
(* Arithmetic: 2 * 2 * 1/√2 * 2 * 1/2 * 1/2 * 1/√2 = 1 *)
C_field.
+ (* f = fun x => ¬ x *)
subst. unfold toUnitary. simpl. unfold M_balanced_neg, list2D_to_matrix. simpl.
solve_matrix.
(* Arithmetic: 2 * 2 * 1/√2 * 2 * 1/2 * 1/2 * 1/√2 = 1 *)
C_field.
Qed.
End Deutsch.