forked from inQWIRE/QWIRE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
HOASProofs.v
845 lines (738 loc) · 24.1 KB
/
HOASProofs.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
Require Import QuantumLib.Prelim.
Require Import Monad.
Require Import HOASCircuits.
Require Import HOASExamples.
Require Import Denotation.
Require Import DBCircuits.
Require Import TypeChecking.
Set Bullet Behavior "Strict Subproofs".
Global Unset Asymmetric Patterns.
Delimit Scope matrix_scope with M.
(*****************************************************************************)
(** EXAMPLES START **)
(*****************************************************************************)
Lemma init_qubit1 : ⟦init true⟧ (I 1) = ∣1⟩⟨1∣.
Proof.
matrix_denote.
Msimpl.
reflexivity.
Qed.
(*********************)
(* Ientity circuits *)
(*********************)
(* Qubit form *)
Lemma unitary_transpose_id_qubit : forall (U : Unitary Qubit),
unitary_transpose U ≡ id_circ.
Proof.
unfold HOAS_Equiv.
intros U ρ safe pf_ρ.
destruct (unitary_gate_unitary U) as [WF inv].
matrix_denote.
simpl in *.
setoid_rewrite denote_unitary_transpose.
Msimpl; simpl in *.
repeat rewrite Mmult_assoc; try rewrite inv.
repeat rewrite <- Mmult_assoc; try rewrite inv.
Msimpl.
reflexivity.
Qed.
(*
Lemma apply_U_trans : forall n W (U : Unitary W) li,
compose_super (apply_U n U li) (apply_U n (trans U) li) = fun x => x.
Proof.
intros n W U li.
unfold compose_super.
apply functional_extensionality.
intros ρ.
destruct W.
- simpl. Search trans.
unfold apply_to_first.
unfold apply_qubit_unitary.
*)
Lemma WF_apply_U : forall W n (U : Unitary W) l ρ,
length l = ⟦ W ⟧ ->
(forall x : nat, In x l -> (x < n)%nat) ->
WF_Matrix ρ ->
WF_Matrix (apply_U n U l ρ).
Proof.
intros.
unfold apply_U.
apply WF_super.
apply apply_unitary_unitary; trivial.
easy.
Qed.
Lemma WF_denote_unitary : forall W (U : Unitary W), WF_Matrix (denote_unitary U).
Proof. intros. apply unitary_gate_unitary. Qed.
Lemma WF_trans : forall W (U : Unitary W), WF_Matrix (denote_unitary (trans U)).
Proof. intros. apply unitary_gate_unitary. Qed.
#[export] Hint Resolve WF_denote_unitary : wf_db.
Lemma unitary_transpose_id : forall W (U : Unitary W),
unitary_transpose U ≡ id_circ.
Proof.
intros W U ρ safe WF.
matrix_denote.
rewrite add_fresh_split.
rewrite subst_pat_fresh by constructor.
unfold denote_db_box. simpl.
unfold compose_super, super, pad.
repeat rewrite Nat.add_sub.
rewrite Nat.sub_diag.
Msimpl.
destruct W; try solve [inversion U].
- simpl.
unfold denote_pat; simpl.
unfold swap_list; simpl.
unfold swap_two; simpl.
unfold apply_U, super. simpl.
Msimpl.
2: restore_dims; auto 10 with wf_db.
destruct (unitary_gate_unitary U) as [WFU inv].
assert (WFU' : WF_Matrix (⟦U⟧†)) by auto with wf_db.
simpl_rewrite @denote_unitary_transpose.
simpl in *. Msimpl.
repeat rewrite Mmult_assoc. simpl. rewrite inv.
repeat rewrite <- Mmult_assoc. simpl. rewrite inv.
Msimpl.
easy.
- simpl.
unfold denote_pat; simpl.
Msimpl.
rewrite Mmult_assoc.
unfold super. simpl.
remember (W1 ⊗ W2) as W.
remember (pat_to_list (add_fresh_pat W [])) as li.
destruct (denote_ctrls_unitary W (⟦W⟧) U li ) as [WFU inv].
intros.
rewrite Heqli in H.
simpl.
rewrite (ctx_wtype_size _ (add_fresh_pat W []) (add_fresh_state W [])).
eapply pat_to_list_bounded.
split. validate. rewrite merge_nil_r. easy.
eapply get_fresh_typed.
rewrite get_fresh_split.
specialize (add_fresh_state_merge W [] _ eq_refl) as AFE.
rewrite merge_nil_l in AFE. inversion AFE. rewrite <- H1. easy.
rewrite <- add_fresh_pat_eq.
rewrite subst_pat_fresh by constructor.
easy.
apply add_fresh_typed_empty.
rewrite add_fresh_split. easy.
subst.
rewrite size_wtype_length.
easy.
replace (size_wtype W1 + size_wtype W2)%nat with (⟦ W ⟧) by (subst;easy).
unfold apply_U, apply_unitary, super.
destruct W; try solve [inversion HeqW].
rewrite denote_ctrls_transpose.
remember (denote_ctrls (⟦ W3 ⊗ W4 ⟧) U li) as A.
remember (swap_list (⟦ W3 ⊗ W4 ⟧) li) as S.
rewrite <- (Mmult_assoc _ (A × ρ) _).
rewrite <- (Mmult_assoc _ A ρ).
rewrite inv. Msimpl.
rewrite (Mmult_assoc ρ _ A).
rewrite inv. Msimpl.
rewrite Mmult_assoc.
easy.
Qed.
(****************)
(* Coin Tossing *)
(****************)
Definition fair_coin : Matrix 2 2 :=
fun x y => match x, y with
| 0, 0 => 1/2
| 1, 1 => 1/2
| _, _ => 0
end.
Definition biased_coin (c : Complex.C) : Matrix 2 2 :=
fun x y => match x, y with
| 0, 0 => (1 - c)
| 1, 1 => c
| _, _ => 0
end.
Definition uniform (n : nat) : Matrix n n :=
fun x y => if (x =? y) && (x <? n) then 1/(INR n) else 0.
Lemma bias1 : biased_coin 1 = ∣1⟩⟨1∣.
Proof.
unfold biased_coin.
prep_matrix_equality; simpl.
destruct_m_eq; lca.
Qed.
Lemma even_bias : biased_coin (1/2) = fair_coin.
Proof.
unfold biased_coin, fair_coin.
prep_matrix_equality; simpl.
destruct_m_eq; lca.
Qed.
Lemma fair_toss : ⟦coin_flip⟧ (I 1) = fair_coin.
Proof. matrix_denote. Msimpl. solve_matrix. Qed.
Lemma wf_biased_coin : forall c, WF_Matrix (biased_coin c).
Proof.
intros; show_wf.
Qed.
#[export] Hint Resolve wf_biased_coin : wf_db.
#[export] Hint Unfold super_Zero : den_db.
(* Uses denote_compose: *)
(*
Proposition flips_correct : forall n, ⟦coin_flips n⟧ (I 1) = biased_coin (1/(2^n)).
Proof.
induction n.
+ matrix_denote. Msimpl. solve_matrix.
+ simpl.
repeat (simpl; autounfold with den_db).
replace 0%nat with (⟦[]:Ctx⟧) by auto.
specialize denote_compose as DC. unfold denote_circuit in DC.
rewrite DC with (Γ := []) (Γ1 := []) (Γ1' := []);
[ | apply unbox_typing; [type_check | apply coin_flips_WT]
| type_check
| solve_merge | solve_merge].
(* Apply IH *)
rewrite denote_db_unbox in IHn.
unfold add_fresh_pat in IHn.
unfold add_fresh_state in IHn.
unfold compose_super.
unfold denote_circuit in IHn.
setoid_rewrite IHn.
(* Continue reducing *)
repeat (autounfold with den_db; simpl).
Msimpl.
solve_matrix.
* rewrite Cmult_comm.
rewrite Cmult_assoc.
autorewrite with C_db.
rewrite Cinv_mult_distr; [|nonzero|apply Cpow_nonzero; lra].
replace (/ 2^n) with (/2 * /2 ^ n + /2 */2^n) at 1 by lca.
rewrite Copp_plus_distr.
repeat rewrite <- Cplus_assoc.
autorewrite with C_db.
reflexivity.
* rewrite Cmult_comm.
rewrite Cmult_assoc.
autorewrite with C_db.
rewrite Cinv_mult_distr; [|nonzero|apply Cpow_nonzero; lra].
reflexivity.
Abort.
*)
(* The following uses a lemma (scale_safe) that is worth proving, but not yet proven *)
(* We abort this lemma and prove a more general version below *)
Proposition flips_lift_correct : forall n, ⟦coin_flips_lift n⟧ (I 1) = biased_coin (1/(2^n)).
Proof.
induction n.
+ matrix_denote. Msimpl. solve_matrix.
+ simpl.
matrix_denote.
Msimpl.
simpl in IHn. unfold denote_box, denote_db_box in IHn. simpl in IHn.
unfold hoas_to_db_box in IHn. simpl in IHn.
destruct (coin_flips_lift n) eqn:EC.
unfold remove_pat. simpl.
replace ((box c) $ ()) with (c ()) by reflexivity.
replace (⟨1∣ × (∣0⟩⟨0∣ × (hadamard × ∣0⟩⟨0∣ × hadamard†) × ∣0⟩⟨0∣ .+
∣1⟩⟨1∣ × (hadamard × ∣0⟩⟨0∣ × hadamard†) × ∣1⟩⟨1∣) × ∣1⟩)
with ((1/2) .* (I 1)) by solve_matrix.
assert (scale_safe : forall safe w i j (c : DeBruijn_Circuit w) a ρ,
denote_db_circuit safe i j c (a .* ρ) = a .* denote_db_circuit safe i j c ρ). admit.
rewrite scale_safe.
setoid_rewrite IHn.
solve_matrix.
Abort.
(* This generalizes the theorem to get around the lemma *)
Lemma flips_lift_correct_gen : forall n a, ⟦coin_flips_lift n⟧ (a .* (I 1)) = a .* biased_coin (1/(2^n)).
Proof.
induction n.
+ matrix_denote. Msimpl. solve_matrix.
+ intros a.
simpl.
matrix_denote.
Msimpl.
simpl in IHn. unfold denote_box, denote_db_box in IHn. simpl in IHn.
unfold hoas_to_db_box in IHn. simpl in IHn.
destruct (coin_flips_lift n) eqn:EC.
unfold remove_pat. simpl.
replace ((box c) $ ()) with (c ()) by reflexivity.
match goal with
[|- _ .+ ?f ?ρ = _] => replace ρ with ((a/2 .* (I 1)))
end.
2: solve_matrix; rewrite (Cmult_comm (/√2)), <- Cmult_assoc; autorewrite with C_db; easy.
setoid_rewrite (IHn (a / 2)).
solve_matrix.
C_field_simplify. lca. nonzero.
Qed.
Lemma flips_lift_correct : forall n, ⟦coin_flips_lift n⟧ (I 1) = biased_coin (1/(2^n)).
Proof.
intros n.
rewrite <- Mscale_1_l, <- (Mscale_1_l _ _ (I 1)).
apply flips_lift_correct_gen.
Qed.
(***********)
(* sharing *)
(***********)
(*
Proposition denote_circuit_subst : forall w (c : Circuit w) Γ, Types_Circuit Γ c ->
forall pad n σ,
WF_σ Γ (get_σ σ) ->
⟨
⟨ pad | n | c | σ ⟩
= compose_super ⟨pad | n | c | st_{n}⟩
(super (swap_list n (get_σ σ))).
Proof.
induction 1; intros.
* simpl.
erewrite subst_id; eauto.
admit. admit.
* simpl. erewrite H; eauto. admit.
Abort.
Proposition denote_unbox : forall n w1 w2 (b : Box w1 w2) Γ1 p σ,
Typed_Box b -> Types_Pat Γ1 p ->
n = ⟦w1⟧ -> WF_σ Γ1 (get_σ σ) ->
⟨0 | n | unbox b p | σ⟩
= compose_super (⟦b⟧)
(super (swap_list (⟦w1⟧) (pat_to_list (subst_pat (get_σ σ) p)))).
Proof.
intros.
rewrite denote_db_unbox.
rewrite denote_circuit_subst with (Γ := Γ1); auto.
subst.
admit (* not quite *).
Abort.
*)
#[export] Hint Unfold apply_box : den_db.
Open Scope matrix_scope.
(*
Broken in 8.10? (I guess the types never really made sense...
Definition prepare (ls : list nat) : Vector (2^(length ls)) :=
fold_left (fun A x => ket x ⊗ A) ls ((I 1)).
*)
Definition prepare (ls : list nat) : Vector (2^(length ls)) :=
⨂ (map ket ls).
Definition pure {n} (vec : Matrix n 1%nat) : Matrix n n := vec × (vec †).
Definition prep α β : Matrix 2 2 := pure ((α.*∣0⟩) .+ (β.*∣1⟩)).
Lemma wf_prep : forall α β, WF_Matrix (prep α β).
Proof.
intros. unfold prep, pure.
show_wf.
Qed.
#[export] Hint Unfold pure : den_db.
Close Scope matrix_scope.
(*
Proposition share_correct : forall n α β,
(@denote _ _ (@Denote_Box _ _) (share n) (pure (α.*∣0⟩ .+ β.*∣1⟩))
= pure (α.*(S n ⨂ ∣0⟩) .+ β.*(S n ⨂ ∣1⟩)))%M.
Proof.
induction n; intros.
* repeat (autounfold with den_db; simpl).
autorewrite with M_db.
reflexivity.
* repeat (autounfold with den_db; simpl).
autorewrite with M_db.
setoid_rewrite kron_adjoint.
autorewrite with M_db.
remember (singleton 1%nat Qubit) as Γ1.
remember (singleton 0%nat Qubit) as Γ2.
remember (Γ1 ⋓ Γ2) as Γ1'.
assert (size_Γ1' : ⟦Γ1'⟧ = 2%nat).
{ subst. auto. }
assert (Γ2 ⊢ qubit 0%nat :Pat).
{ constructor. subst. constructor. }
unfold add_fresh_state. simpl.
replace 2%nat with (⟦Γ1'⟧) by auto.
replace (0%nat) with (⟦[]:Ctx⟧) by auto.
replace (S (⟦∅⟧)) with 1%nat by auto.
destruct Γ1' as [|Γ1']. inversion size_Γ1'.
replace ([Some Qubit; Some Qubit]) with Γ1'.
2: subst; unlock_merge; simpl in *; inversion HeqΓ1'; easy.
unfold process_gate_state. simpl.
specialize denote_compose as DC. unfold denote_circuit in DC.
rewrite DC with (Γ0 := []) (Γ := Γ1) (Γ1 := Γ2) (Γ1' := Γ1') (Γ01 := Γ2);
[ | apply share_WT; type_check; repeat constructor
| intros; simpl; type_check
| rewrite HeqΓ1'; solve_merge | solve_merge].
2: unlock_merge; simpl; validate.
admit (* need padding lemma *).
Abort.
*)
(* Can we multiply 16 x 16 matrices? Yes, we can!
Example test : ((swap ⊗ swap) × (swap ⊗ swap) = I 16)%M.
Proof.
solve_matrix.
all: unfold Nat.ltb; simpl; rewrite andb_false_r; reflexivity.
Qed. *)
(***********************)
(* Deutsch's Algorithm *)
(***********************)
Delimit Scope circ_scope with qc.
Close Scope circ_scope.
Open Scope matrix_scope.
(* Version on an abstract unitary gate *)
(* f(x) = 0. Unitary: Ientity *)
Definition f0 : Matrix 4 4 := I 4.
(* f(x) = x. Unitary: CNOT *)
Definition f1 : Matrix 4 4 := control σx.
(* f(x) = 1 - x. Unitary: inverse CNOT *)
Definition f2 : Matrix 4 4 := fun x y =>
match x, y with
| 0, 1 | 1, 0 | 2, 2 | 3, 3 => 1
| _, _ => 0
end.
(* f(x) = 1. Unitary: I ⊗ X *)
Definition f3 : Matrix 4 4 := I 2 ⊗ σx.
Definition U_constant (U : Unitary (Qubit ⊗ Qubit)%qc) :=
apply_U 2 U [0;1]%nat = super f0 \/ apply_unitary 2 U [0;1]%nat = f3.
Definition U_balanced (U : Unitary (Qubit ⊗ Qubit)%qc) :=
apply_U 2 U [0;1]%nat = super f1 \/ apply_unitary 2 U [0;1]%nat = f2.
Lemma f2_WF : WF_Matrix f2. Proof. show_wf. Qed.
#[export] Hint Resolve f2_WF : wf_db.
Close Scope matrix_scope.
Open Scope circ_scope.
(* Set Ltac Profiling. *)
(* One could quibble with the following proofs that they're true vacuously since
we don't have a unitary corresponding to f0, f2 or f3 (though f1 exists).
However, we could easily add them, and the proofs of each case mirrors that
of f1 (=CNOT). *)
Lemma U_deutsch_constant : forall U_f, U_constant U_f ->
⟦U_deutsch U_f⟧ (I 1) = ∣0⟩⟨0∣.
Proof.
intros U_f H.
simpl.
unfold denote_box. unfold denote_db_box. simpl.
unfold subst_var. simpl.
unfold apply_U.
destruct H; setoid_rewrite H.
- (* f0 *)
matrix_denote.
restore_dims.
unfold f0.
clear.
(* Msimpl / Msimpl_light are taking forever here, which is worrisome *)
repeat rewrite id_sa.
repeat rewrite kron_1_r.
repeat rewrite kron_1_l; auto with wf_db.
repeat rewrite Mmult_1_r; auto 10 with wf_db.
repeat rewrite Mmult_1_l; auto 20 with wf_db.
solve_matrix.
C_field.
- (* f3 *)
matrix_denote.
unfold f3. clear.
repeat rewrite id_sa.
repeat rewrite kron_1_r.
repeat rewrite kron_1_l; auto with wf_db.
repeat rewrite Mmult_1_r; auto 10 with wf_db.
repeat rewrite Mmult_1_l; auto 20 with wf_db.
solve_matrix.
C_field.
Qed.
Lemma U_deutsch_balanced : forall U_f, U_balanced U_f ->
⟦U_deutsch U_f⟧ (I 1) = ∣1⟩⟨1∣.
Proof.
intros U_f H.
simpl.
unfold denote_box. unfold denote_db_box. simpl.
unfold subst_var. simpl.
unfold apply_U.
destruct H; setoid_rewrite H.
+ (* f1 *)
matrix_denote.
unfold f1. clear.
restore_dims.
repeat rewrite id_sa.
repeat rewrite kron_1_r.
repeat rewrite kron_1_l; auto with wf_db.
repeat rewrite Mmult_1_r; auto 10 with wf_db.
repeat rewrite Mmult_1_l; auto 20 with wf_db.
solve_matrix.
C_field.
+ (* f2 *)
matrix_denote.
unfold f2. clear.
restore_dims.
repeat rewrite id_sa.
repeat rewrite kron_1_r.
repeat rewrite kron_1_l; auto with wf_db.
repeat rewrite Mmult_1_r; auto 10 with wf_db.
repeat rewrite Mmult_1_l; auto 20 with wf_db.
solve_matrix.
C_field.
Qed.
(* Show Ltac Profile *)
(* Slightly faster to destruct 'balanced' last
Lemma deutsch_balanced'' : forall U_f, balanced U_f ->
⟦deutsch U_f⟧ (I 1) = ∣1⟩⟨1∣.
Proof.
intros U_f H.
repeat (simpl; autounfold with den_db).
specialize (unitary_gate_unitary U_f). intros [WFU UU].
simpl in WFU.
Msimpl.
solve_matrix.
all: destruct H; rewrite H; clear.
+ (* Cell (0,0), f1 *)
unfold f1.
autounfold with U_db.
simpl.
autorewrite with C_db.
reflexivity.
+ (* Cell (0,0), f2 *)
unfold f2.
autorewrite with C_db.
reflexivity.
+ (* Cell (1,1), f1 *)
unfold f1.
autounfold with U_db.
simpl.
autorewrite with C_db.
rewrite (Cmult_comm (/ √2) _).
rewrite Cmult_assoc.
rewrite (Cmult_assoc 2 (/2)).
autorewrite with C_db.
rewrite <- Cmult_assoc.
autorewrite with C_db.
reflexivity.
+ (* Cell (1,1), f2 *)
unfold f2.
simpl.
autorewrite with C_db.
rewrite (Cmult_comm (/ √2) _).
rewrite Cmult_assoc.
rewrite (Cmult_assoc 2 (/2)).
autorewrite with C_db.
rewrite <- Cmult_assoc.
autorewrite with C_db.
reflexivity.
Qed.
*)
(* A more explicit version that uses concrete boxed circuits *)
Locate "||".
Definition fun_to_box (f : bool -> bool) : Box (Qubit ⊗ Qubit) (Qubit ⊗ Qubit) :=
match (f false), (f true) with
| false, false => id_circ
| false, true => CNOT
| true, false => _X ∥ id_circ ;; CNOT ;; _X ∥ id_circ
| true, true => id_circ ∥ _X
end.
Definition constant (f : bool -> bool) := f true = f false.
Definition balanced (f : bool -> bool) := f true <> f false.
Lemma deutsch_constant_concrete : forall f, constant f ->
⟦deutsch (fun_to_box f)⟧ (I 1) = ∣0⟩⟨0∣.
Proof.
intros f H.
unfold fun_to_box, constant in *.
destruct (f true), (f false); try discriminate H.
- matrix_denote.
Hint Rewrite @kron_1_l @kron_1_r @Mmult_1_l : N_db_light.
clear.
autorewrite with N_db_light.
all: auto 100 with wf_db.
Hint Rewrite @kron_1_l @kron_1_r @Mmult_1_l @Mmult_1_r @Mscale_1_l
@id_adjoint_eq @id_transpose_eq using (eauto 100 with wf_db) : N_db_light.
Hint Rewrite @kron_0_l @kron_0_r @Mmult_0_l @Mmult_0_r @Mplus_0_l @Mplus_0_r
@Mscale_0_l @Mscale_0_r @zero_adjoint_eq @zero_transpose_eq using (eauto 100 with wf_db) : N_db_light.
restore_dims .
autorewrite with M_db_light.
Msimpl_light.
Msimpl.
solve_matrix.
rewrite (Cmult_comm (/√2) _).
repeat (rewrite (Cmult_assoc 2 (/2)); autorewrite with C_db).
easy.
- matrix_denote.
Msimpl.
solve_matrix.
rewrite (Cmult_comm (/√2) _).
repeat (rewrite (Cmult_assoc 2 (/2)); autorewrite with C_db).
easy.
Qed.
Lemma deutsch_balanced_concrete : forall f, balanced f ->
⟦deutsch (fun_to_box f)⟧ (I 1) = ∣1⟩⟨1∣.
Proof.
intros f H.
unfold fun_to_box, balanced in *.
destruct (f true), (f false); try contradiction.
- matrix_denote.
Msimpl.
solve_matrix.
rewrite (Cmult_comm (/√2) _).
repeat (rewrite (Cmult_assoc 2 (/2)); autorewrite with C_db).
easy.
- matrix_denote.
Msimpl.
solve_matrix.
rewrite (Cmult_comm (/√2) _).
repeat (rewrite (Cmult_assoc 2 (/2)); autorewrite with C_db).
easy.
Qed.
(*************************)
(* Quantum Teleportation *)
(*************************)
Definition EPR00 : Matrix 4 4 :=
fun x y => match x, y with
| 0, 0 => 1/2
| 0, 3 => 1/2
| 3, 0 => 1/2
| 3, 3 => 1/2
| _, _ => 0
end.
Lemma bell00_spec : ⟦bell00⟧ (I 1) = EPR00.
Proof.
repeat (simpl; autounfold with den_db).
Msimpl.
solve_matrix.
Qed.
(* Works, but commented out for efficient compilation *)
Definition M_alice (ρ : Matrix 4 4) : Matrix 4 4 :=
fun x y =>
match x, y with
| 0, 0 => (ρ 0%nat 0%nat + ρ 3%nat 0%nat + ρ 0%nat 3%nat + ρ 3%nat 3%nat) / 2
| 1, 1 => (ρ 1%nat 1%nat + ρ 2%nat 1%nat + ρ 1%nat 2%nat + ρ 2%nat 2%nat) / 2
| 2, 2 => (ρ 0%nat 0%nat - ρ 3%nat 0%nat - ρ 0%nat 3%nat + ρ 3%nat 3%nat) / 2
| 3, 3 => (ρ 1%nat 1%nat - ρ 2%nat 1%nat - ρ 1%nat 2%nat + ρ 2%nat 2%nat) / 2
| _, _ => 0
end.
Lemma alice_spec : forall (ρ : Density 4), WF_Matrix ρ -> ⟦alice⟧ ρ = M_alice ρ.
Proof.
matrix_denote. Msimpl.
repeat rewrite <- Mmult_assoc; Msimpl.
repeat rewrite Mmult_assoc; Msimpl.
solve_matrix.
all: autorewrite with Cdist_db;
repeat rewrite (Cmult_comm _ (/√2));
repeat rewrite Cmult_assoc;
autorewrite with C_db; lca.
Qed.
(* Spec computed rather than reasoned about - should confirm correct *)
Definition M_bob (ρ : Density 8) : Density 2 :=
fun x y => match x, y with
| 0, 0 => ρ 0%nat 0%nat + ρ 3%nat 3%nat + ρ 4%nat 4%nat + ρ 7%nat 7%nat
| 0, 1 => ρ 0%nat 1%nat + ρ 3%nat 2%nat - ρ 4%nat 5%nat - ρ 7%nat 6%nat
| 1, 0 => ρ 1%nat 0%nat + ρ 2%nat 3%nat - ρ 5%nat 4%nat - ρ 6%nat 7%nat
| 1, 1 => ρ 1%nat 1%nat + ρ 2%nat 2%nat + ρ 5%nat 5%nat + ρ 6%nat 6%nat
| _, _ => 0
end.
Lemma bob_spec : forall (ρ : Density 8), WF_Matrix ρ -> ⟦bob⟧ ρ = M_bob ρ.
Proof. matrix_denote. Msimpl. solve_matrix. Qed.
(* We convert the matrices back to functional representation for
unification. Simply comparing the matrices may be more efficient,
however. *)
Lemma teleport_eq : teleport ≡ id_circ.
Proof.
intros ρ safe WF.
matrix_denote.
Msimpl.
solve_matrix.
all: rewrite (Cmult_assoc (/ √2));
autorewrite with C_db;
rewrite (Cmult_comm _ (/2));
rewrite (Cmult_assoc 2 (/2));
autorewrite with C_db;
rewrite (Cmult_assoc 2 (/2));
autorewrite with C_db;
reflexivity.
Qed.
(* Teleport with Dynamic Lifting *)
Open Scope matrix_scope.
Definition M_bob_distant (b1 b2 : bool) (ρ : Density 2) : Matrix 2 2 :=
match b1, b2 with
| true, true => σz × σx × ρ × σx × σz
| true, false => σz × ρ × σz
| false, true => σx × ρ × σx
| false, false => ρ
end.
Close Scope matrix_scope.
Definition bob_distant_spec : forall b1 b2 (ρ : Density 2),
WF_Matrix ρ ->
⟦bob_distant b1 b2⟧ ρ = M_bob_distant b1 b2 ρ.
Proof.
intros.
destruct b1, b2;
matrix_denote; Msimpl; solve_matrix.
Qed.
Definition teleport_distant_eq : teleport_distant ≡ id_circ.
Proof.
intros ρ safe WF.
matrix_denote.
Msimpl.
solve_matrix.
idtac.
all: rewrite (Cmult_assoc (/ √2));
autorewrite with C_db;
rewrite (Cmult_comm _ (/2));
rewrite (Cmult_assoc 2 (/2));
autorewrite with C_db;
rewrite (Cmult_assoc 2 (/2));
autorewrite with C_db;
reflexivity.
Qed.
(*********************)
(* Superdense Coding *)
(*********************)
Lemma superdense_eq : forall (ρ : Density 4),
Classical ρ ->
WF_Matrix ρ ->
⟦superdense⟧ ρ = ρ.
Proof.
intros ρ CL WF.
matrix_denote.
Msimpl.
solve_matrix.
all: try (rewrite CL by lia; easy).
all: autorewrite with Cdist_db;
repeat rewrite Cmult_assoc; autorewrite with C_db;
repeat rewrite <- Cmult_assoc; autorewrite with C_db;
lca.
Qed.
Lemma superdense_distant_eq : forall b1 b2,
⟦superdense_distant b1 b2⟧ (I 1) = bools_to_matrix [b1; b2].
Proof.
intros b1 b2.
specialize (WF_bools_to_matrix ([b1;b2])) as WF.
destruct b1, b2; matrix_denote; Msimpl; solve_matrix.
Qed.
(* Lemmas out of date
Proposition boxed_gate_correct : forall W1 W2 (g : Gate W1 W2) (ρ : Density (2^⟦W1⟧)) ,
Mixed_State ρ -> ⟦boxed_gate g⟧ ρ = ⟦g⟧ ρ.
Proof.
intros W1 W2 g ρ wf_ρ. simpl.
unfold denote_pat_in.
repeat rewrite merge_nil_r.
repeat rewrite size_fresh_ctx.
repeat rewrite fresh_pat_empty.
repeat rewrite map_num_wires_before.
repeat rewrite swap_list_n_id.
unfold super, compose_super.
repeat rewrite mult_1_r.
assert (wf_g : WF_Matrix (2^⟦W2⟧) (2^⟦W2⟧) (⟦g⟧ ρ)).
generalize (WF_denote_gate 0 _ _ g ρ); intros.
simpl in *. repeat rewrite mult_1_r in *. unfold denote_gate. apply (H wf_ρ).
Msimpl.
reflexivity.
Abort.
Proposition lift_meas_correct : lift_meas ≡ boxed_gate meas.
Proof.
intros ρ wf_ρ.
simpl.
repeat (unfold denote_pat_in, swap_list, swap_two; simpl).
Msimpl.
unfold super, compose_super, Splus, SZero.
Msimpl.
rewrite braqubit0_adjoint, braqubit1_adjoint.
prep_matrix_equality; simpl.
unfold Mplus, Mmult, I, adjoint, Zero. simpl.
autorewrite with C_db.
rewrite Cplus_comm. reflexivity.
Abort.
Proposition lift_eta_correct : forall (ρ : Density 2), WF_Matrix 2 2 ρ
-> ⟦lift_eta Bit⟧ ρ = ⟦@id_circ Bit⟧ ρ.
Abort (* This is only true if ρ is a classical state *).
(* Proof.
intros ρ wf_ρ.
simpl.
repeat (unfold denote_pat_in, swap_list, swap_two; simpl).
Msimpl.
unfold super, compose_super, Splus, SZero.
Msimpl.
prep_matrix_equality.
unfold Mmult, Mplus, Zero, adjoint, qubit0, qubit1. simpl.
Csimpl.
destruct x; Csimpl.
destruct y; Csimpl.
*)
*)