-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
440 lines (374 loc) · 16.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
"""
Copyright 2017-2018 Fizyr (https://fizyr.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from silence_tensorflow import silence_tensorflow
silence_tensorflow()
import argparse
from datetime import date
from glob import glob
import os
import sys
import numpy as np
import tensorflow as tf
import tensorflow_addons as tfa
from tensorflow import keras
import tensorflow.keras.backend as K
from tensorflow.keras.optimizers import Adam, SGD
from augmentor.color import VisualEffect
from augmentor.misc import MiscEffect
from model import efficientdet
from losses import smooth_l1, focal, smooth_l1_quad, iou_loss
from efficientnet import BASE_WEIGHTS_PATH, WEIGHTS_HASHES
def seed_everything(seed=33):
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
tf.random.set_seed(seed)
seed_everything()
def makedirs(path):
# Intended behavior: try to create the directory,
# pass if the directory exists already, fails otherwise.
# Meant for Python 2.7/3.n compatibility.
try:
os.makedirs(path)
except OSError:
if not os.path.isdir(path):
raise
def get_session():
"""
Construct a modified tf session.
"""
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
return tf.Session(config=config)
def create_callbacks(training_model, prediction_model, validation_generator, args):
"""
Creates the callbacks to use during training.
Args
training_model: The model that is used for training.
prediction_model: The model that should be used for validation.
validation_generator: The generator for creating validation data.
args: parseargs args object.
Returns:
A list of callbacks used for training.
"""
callbacks = []
tensorboard_callback = None
if args.tensorboard_dir:
if tf.version.VERSION > '2.0.0':
file_writer = tf.summary.create_file_writer(args.tensorboard_dir)
file_writer.set_as_default()
tensorboard_callback = keras.callbacks.TensorBoard(
log_dir=args.tensorboard_dir,
histogram_freq=0,
batch_size=args.batch_size,
write_graph=True,
write_grads=False,
write_images=False,
embeddings_freq=0,
embeddings_layer_names=None,
embeddings_metadata=None
)
callbacks.append(tensorboard_callback)
if args.evaluation and validation_generator:
if args.dataset_type == 'coco':
from eval.coco import Evaluate
# use prediction model for evaluation
evaluation = Evaluate(validation_generator, prediction_model, tensorboard=tensorboard_callback)
else:
from eval.pascal import Evaluate
evaluation = Evaluate(validation_generator, prediction_model, tensorboard=tensorboard_callback)
callbacks.append(evaluation)
# save the model
if args.snapshots:
# ensure directory created first; otherwise h5py will error after epoch.
makedirs(args.snapshot_path)
checkpoint = keras.callbacks.ModelCheckpoint(
os.path.join(args.snapshot_path, f'{args.dataset_type}.h5'),
verbose=1,
save_weights_only=True,
save_best_only=True,
monitor='val_loss',
mode='min'
)
callbacks.append(checkpoint)
# save weights each 10 epochs after 50 epochs
def save_weigths(epoch, logs):
if epoch>50 and (epoch-1)%10==0:
self.model.save_weights(os.path.join(args.snapshot_path, f'{args.dataset_type}_{epoch}.h5'))
callbacks.extend([
keras.callbacks.ReduceLROnPlateau(
monitor='val_loss',
factor=0.8,
patience=2,
verbose=1,
mode='auto',
cooldown=0,
min_lr=1e-6),
keras.callbacks.CSVLogger(
filename = os.path.join(args.snapshot_path, f'{args.dataset_type}_history.csv'),
append = True),
keras.callbacks.EarlyStopping(
patience = 10),
keras.callbacks.TerminateOnNaN(),
#keras.callbacks.LambdaCallback(on_epoch_end = save_weigths)
])
return callbacks
def create_generators(args):
"""
Create generators for training and validation.
Args
args: parseargs object containing configuration for generators.
preprocess_image: Function that preprocesses an image for the network.
"""
common_args = {
'batch_size': args.batch_size,
'phi': args.phi,
'detect_text': args.detect_text,
'detect_quadrangle': args.detect_quadrangle
}
# create random transform generator for augmenting training data
if args.random_transform:
misc_effect = MiscEffect()
visual_effect = VisualEffect()
else:
misc_effect = None
visual_effect = None
if args.dataset_type == 'pascal':
from generators.pascal import PascalVocGenerator
train_generator = PascalVocGenerator(
args.pascal_path,
'trainval',
skip_difficult=True,
misc_effect=misc_effect,
visual_effect=visual_effect,
**common_args
)
validation_generator = PascalVocGenerator(
args.pascal_path,
'val',
skip_difficult=True,
shuffle_groups=False,
**common_args
)
elif args.dataset_type == 'csv':
from generators.csv_ import CSVGenerator
train_generator = CSVGenerator(
args.annotations_path,
args.classes_path,
misc_effect=misc_effect,
visual_effect=visual_effect,
**common_args
)
if args.val_annotations_path:
validation_generator = CSVGenerator(
args.val_annotations_path,
args.classes_path,
shuffle_groups=False,
**common_args
)
else:
validation_generator = None
elif args.dataset_type == 'coco':
# import here to prevent unnecessary dependency on cocoapi
from generators.coco import CocoGenerator
train_generator = CocoGenerator(
args.coco_path,
'train2017',
misc_effect=misc_effect,
visual_effect=visual_effect,
group_method='random',
**common_args
)
validation_generator = CocoGenerator(
args.coco_path,
'val2017',
shuffle_groups=False,
**common_args
)
else:
raise ValueError('Invalid data type received: {}'.format(args.dataset_type))
return train_generator, validation_generator
def check_args(parsed_args):
"""
Function to check for inherent contradictions within parsed arguments.
For example, batch_size < num_gpus
Intended to raise errors prior to backend initialisation.
Args
parsed_args: parser.parse_args()
Returns
parsed_args
"""
if parsed_args.gpu and parsed_args.batch_size < len(parsed_args.gpu.split(',')):
raise ValueError(
"Batch size ({}) must be equal to or higher than the number of GPUs ({})".format(parsed_args.batch_size,
len(parsed_args.gpu.split(
','))))
return parsed_args
def parse_args(args):
"""
Parse the arguments.
"""
today = str(date.today())
parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.')
subparsers = parser.add_subparsers(help='Arguments for specific dataset types.', dest='dataset_type')
subparsers.required = True
coco_parser = subparsers.add_parser('coco')
coco_parser.add_argument('coco_path', help='Path to dataset directory (ie. /tmp/COCO).')
pascal_parser = subparsers.add_parser('pascal')
pascal_parser.add_argument('pascal_path', help='Path to dataset directory (ie. /tmp/VOCdevkit).')
csv_parser = subparsers.add_parser('csv')
csv_parser.add_argument('annotations_path', help='Path to CSV file containing annotations for training.')
csv_parser.add_argument('classes_path', help='Path to a CSV file containing class label mapping.')
csv_parser.add_argument('--val-annotations-path',
help='Path to CSV file containing annotations for validation (optional).')
parser.add_argument('--detect-quadrangle', help='If to detect quadrangle.', action='store_true', default=False)
parser.add_argument('--detect-text', help='If is text detection task.', action='store_true', default=False)
parser.add_argument('--snapshot', help='Resume training from a snapshot.')
parser.add_argument('--freeze-backbone', help='Freeze training of backbone layers.', action='store_true')
parser.add_argument('--freeze-bn', help='Freeze training of BatchNormalization layers.', action='store_true')
parser.add_argument('--weighted-bifpn', help='Use weighted BiFPN', action='store_true')
parser.add_argument('--lr', help='Learning rate.', default=1e-3, type=float)
parser.add_argument('--batch-size', help='Size of the batches.', default=1, type=int)
parser.add_argument('--phi', help='Hyper parameter phi', default=0, type=int, choices=(0, 1, 2, 3, 4, 5, 6))
parser.add_argument('--gpu', help='Id of the GPU to use (as reported by nvidia-smi).')
parser.add_argument('--epochs', help='Number of epochs to train.', type=int, default=50)
parser.add_argument('--steps', help='Number of steps per epoch.', type=int, default=10000)
parser.add_argument('--snapshot-path',
help='Path to store snapshots of models during training',
default='checkpoints/{}'.format(today))
parser.add_argument('--tensorboard-dir', help='Log directory for Tensorboard output',
default='logs/{}'.format(today))
parser.add_argument('--no-snapshots', help='Disable saving snapshots.', dest='snapshots', action='store_false')
parser.add_argument('--no-evaluation', help='Disable per epoch evaluation.', dest='evaluation',
action='store_false')
parser.add_argument('--random-transform', help='Randomly transform image and annotations.', action='store_true')
parser.add_argument('--compute-val-loss', help='Compute validation loss during training', dest='compute_val_loss',
action='store_true')
parser.add_argument('--loss', help='Loss function to be used.', default='l1', type=str, \
choices=('l1', 'probioul1', 'probioul2', 'giou', 'iou', 'diou', 'ciou'))
parser.add_argument('--regression_weight', help='Weight multiplying regression loss.', default=1., type=float)
parser.add_argument('--use_tfrecords', help='If to use tfrecords. If no tfrecords available, it will create them.', action='store_true')
parser.add_argument('--freeze_iterations', help='Iterations to freezed W and H learning. THIS IS ENTIRELY EXPERIMENTAL!', default=0, type=int)
# Fit generator arguments
parser.add_argument('--multiprocessing', help='Use multiprocessing in fit_generator.', action='store_true')
parser.add_argument('--workers', help='Number of generator workers.', type=int, default=1)
parser.add_argument('--max-queue-size', help='Queue length for multiprocessing workers in fit_generator.', type=int,
default=10)
print(vars(parser.parse_args(args)))
return check_args(parser.parse_args(args))
def main(args=None):
# parse arguments
if args is None:
args = sys.argv[1:]
args = parse_args(args)
# create the generators
train_generator, validation_generator = create_generators(args)
num_classes = train_generator.num_classes()
num_anchors = train_generator.num_anchors
# optionally choose specific GPU
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if len(tf.config.experimental.list_physical_devices('GPU'))>1:
strategy = tf.distribute.MirroredStrategy()
else:
strategy = tf.distribute.get_strategy()
# K.set_session(get_session())
with strategy.scope():
model, prediction_model = efficientdet(args.phi,
num_classes=num_classes,
num_anchors=num_anchors,
weighted_bifpn=args.weighted_bifpn,
freeze_bn=args.freeze_bn,
detect_quadrangle=args.detect_quadrangle
)
# load pretrained weights
if args.snapshot:
if args.snapshot == 'imagenet':
model_name = 'efficientnet-b{}'.format(args.phi)
file_name = '{}_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5'.format(model_name)
file_hash = WEIGHTS_HASHES[model_name][1]
weights_path = keras.utils.get_file(file_name,
BASE_WEIGHTS_PATH + file_name,
cache_subdir='models',
file_hash=file_hash)
model.load_weights(weights_path, by_name=True)
else:
print('Loading model, this may take a second...')
model.load_weights(args.snapshot)
# freeze backbone layers
if args.freeze_backbone:
# 227, 329, 329, 374, 464, 566, 656
for i in range(1, [227, 329, 329, 374, 464, 566, 656][args.phi]):
model.layers[i].trainable = False
# compile model
if args.loss=='l1':
regression_loss = smooth_l1_quad() if args.detect_quadrangle else smooth_l1()
else:
regression_loss = iou_loss(mode=args.loss, phi=args.phi,\
weight=args.regression_weight,\
freeze_iterations=args.freeze_iterations)
with strategy.scope():
if 'probiou' in args.loss:
optimizer = Adam(lr=args.lr, epsilon=1e-3, clipvalue=10.)
else:
optimizer = Adam(lr=args.lr)
model.compile(optimizer=optimizer, loss={
'regression': regression_loss,
'classification': focal()
}, )
# total steps per epoch
train_steps = len(train_generator)
validation_steps = len(validation_generator)
# if to use tfrecords
if args.use_tfrecords:
from generators.tfrecords import create_tfrecords, get_loader
from os.path import exists, join
if args.dataset_type == 'pascal':
data_path = args.pascal_path
elif args.dataset_type == 'coco':
data_path = args.coco_path
else:
raise Exception('Not implemented yet! Try not using tfrecords option...')
path_tfrecords = os.path.join(data_path, f'tfrecords_phi{args.phi}')
os.makedirs(path_tfrecords, exist_ok=True)
# create tfrecords files
if not glob(join(path_tfrecords, 'train*.tfrec')):
print('Creating tfrecords for train data...')
create_tfrecords(path_tfrecords, 'train', train_generator, repetitions=10 if args.dataset_type == 'pascal' else 2)
if not glob(join(path_tfrecords, 'val*.tfrec')):
print('Creating tfrecords for validation data...')
create_tfrecords(path_tfrecords, 'val', validation_generator, repetitions=1)
# get tfrecords loaders
train_generator = get_loader(path_tfrecords, 'train', args.batch_size)
validation_generator = get_loader(path_tfrecords, 'val', args.batch_size)
# create the callbacks
callbacks = create_callbacks(
model,
prediction_model,
validation_generator,
args,
)
if not args.compute_val_loss:
validation_generator = None
elif args.compute_val_loss and validation_generator is None:
raise ValueError('When you have no validation data, you should not specify --compute-val-loss.')
# start training
return model.fit(
train_generator,
steps_per_epoch=train_steps,
epochs=args.epochs,
callbacks=callbacks,
validation_data=validation_generator,
validation_steps=validation_steps
)
if __name__ == '__main__':
main()