The base repository was forked and modified for Embarkvet daily cost reporting purposes. See this card
The following changes were made:
- Parameterized granularity and default to "DAILY"
- Added parameters to govern how many "trailing_days" to report on
- Refactor for style and maintainability
- Modularize the CE functionality and separate from driver
- Added
rds_access.py
module to allow per-dog reporting - attempted to extend the CFN stack to include an RDS proxy for lambda to access (pending...)
- Dockerfile - defines the container and command in which the lambda layer, dependencies, and function will be packaged
- calls
src/build_package.sh
- utilizes
src/requirements.txt
- calls
- build.sh - builds the lambda.zip and layer.zip and deposits them to
bin
- src/sam.yaml - CFN template defining the stack, lambda layer name is currently hardcoded
- deploy.sh - variable overwrites for the
src/sam.yaml
CFN template, packages the template, publishes the lambda layer and deploys the stack, updating the lambda function code. **Manually editing lambda function code in console prevents the deployment from overwriting it - src/*.py - application code
Python SAM Lambda module for generating an Excel cost report with graphs, including month on month cost changes. Uses the AWS Cost Explorer API for data.
This sample code is made available under a modified MIT license. See the LICENSE file.
- AWS Lambda Invocation
- Usually Free
- Amazon SES
- Usually Free
- Amazon S3
- Minimal usage
- AWS Cost Explorer API calls
- awscli
- Configure AWS credentials for target account
- run
aws configure
- run
- Cost Explorer enabled
- Verfied Amazon SES Sender email
- If you verify an email, you can send from/to that address.
- To send to other addresses, you need to move SES out of sandbox mode.
Docker (optional for building the lambda python package with updated https://pypi.python.org/ third-party libraries)
If you do not need to modify the code, just deploy the included easy_deploy.yaml using AWS Cloudformation via the console.
Update the values in deploy.sh for your AWS account details.
Variable | Description |
---|---|
S3_BUCKET | S3 Bucket to use |
SES_SEND | Email list to send to (comma separated) |
SES_FROM | SES Verified Sender Email |
SES_REGION | SES Region |
COST_TAGS | List Of Cost Tag Keys (comma separated) |
CURRENT_MONTH | true / false for if report does current partial month |
DAY_MONTH | When to schedule a run. 6, for the 6th by default |
TAG_KEY | Provide tag key e.g. Name |
TAG_VALUE_FILTER | Provide tag value to filter e.g. Prod* |
LAST_MONTH_ONLY | Specify true if you wish to generate for only last month |
And then run sh deploy.sh
- Create a lambda function (python 3.6 runtime), and update the code to the contents of src/lambda.py
- Create a lambda IAM execution role with ce:, ses:, s3:, organizations:ListAccounts
- Configure the dependency layer: arn:aws:lambda:us-east-1:749981256976:layer:aws-cost-explorer-report:1
- Update ENV Variables in Lambda console
- Details in table above.
- Create a trigger (CloudWatch Event)
Once the Lambda is created, find it in the AWS Lambda console. You can create ANY test event (as the event content is ignored), and hit the test button for a manual run.
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-scheduled-events-test-function.html
Building the Lambda Layer (Optional, for if you want to build your own AWS Lambda layer for use with the script)
Run build.sh to build a new AWS lambda layer with the required Python libraries. This requires Docker, as it builds the package in an Amazon Linux container.
sh build.sh
Edit the main_handler
segment of src/lambda.py
def main_handler(event=None, context=None):
costexplorer = CostExplorer(CurrentMonth=False)
# Default addReport has filter to remove Support / Credits / Refunds / UpfrontRI
# Overall Billing Reports
costexplorer.add_report(Name="Total", GroupBy=[], Style='Total', IncSupport=True)
costexplorer.add_report(Name="TotalChange", GroupBy=[], Style='Change')
costexplorer.add_report(Name="TotalInclCredits", GroupBy=[], Style='Total', NoCredits=False, IncSupport=True)
costexplorer.add_report(Name="TotalInclCreditsChange", GroupBy=[], Style='Change', NoCredits=False)
costexplorer.add_report(Name="Credits", GroupBy=[], Style='Total', CreditsOnly=True)
costexplorer.add_report(Name="Refunds", GroupBy=[], Style='Total', RefundOnly=True)
costexplorer.add_report(Name="RIUpfront", GroupBy=[], Style='Total', UpfrontOnly=True)
# GroupBy Reports
costexplorer.add_report(Name="Services", GroupBy=[{"Type": "DIMENSION", "Key": "SERVICE"}], Style='Total',
IncSupport=True)
costexplorer.add_report(Name="ServicesChange", GroupBy=[{"Type": "DIMENSION", "Key": "SERVICE"}], Style='Change')
costexplorer.add_report(Name="Accounts", GroupBy=[{"Type": "DIMENSION", "Key": "LINKED_ACCOUNT"}], Style='Total')
costexplorer.add_report(Name="AccountsChange", GroupBy=[{"Type": "DIMENSION", "Key": "LINKED_ACCOUNT"}],
Style='Change')
costexplorer.add_report(Name="Regions", GroupBy=[{"Type": "DIMENSION", "Key": "REGION"}], Style='Total')
costexplorer.add_report(Name="RegionsChange", GroupBy=[{"Type": "DIMENSION", "Key": "REGION"}], Style='Change')
if os.environ.get('COST_TAGS'): # Support for multiple/different Cost Allocation tags
for tagkey in os.environ.get('COST_TAGS').split(','):
tabname = tagkey.replace(":", ".") # Remove special chars from Excel tabname
costexplorer.add_report(Name="{}".format(tabname)[:31], GroupBy=[{"Type": "TAG", "Key": tagkey}], Style='Total')
costexplorer.add_report(Name="Change-{}".format(tabname)[:31], GroupBy=[{"Type": "TAG", "Key": tagkey}],
Style='Change')
# RI Reports
costexplorer.add_ri_report(Name="RICoverage")
costexplorer.add_ri_report(Name="RIUtilization")
costexplorer.add_ri_report(Name="RIUtilizationSavings", Savings=True)
costexplorer.add_ri_report(Name="RIRecommendation")
costexplorer.generate_excel()
return "Report Generated"