-
Notifications
You must be signed in to change notification settings - Fork 112
/
convert.rs
300 lines (277 loc) · 8.9 KB
/
convert.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//! Defines conversion traits between rust types and numpy data types.
use ndarray::{ArrayBase, Data, Dimension, IntoDimension, Ix1, OwnedRepr};
use pyo3::Python;
use std::{mem, os::raw::c_int};
use crate::{
npyffi::{self, npy_intp},
Element, PyArray,
};
/// Covnersion trait from some rust types to `PyArray`.
///
/// This trait takes `self`, which means **it holds a pointer to Rust heap, until `resize` or other
/// destructive method is called**.
///
/// In addition, if you construct `PyArray` via this method,
/// **you cannot use some destructive methods like `resize`.**
///
/// # Example
/// ```
/// use numpy::{PyArray, IntoPyArray};
/// pyo3::Python::with_gil(|py| {
/// let py_array = vec![1, 2, 3].into_pyarray(py);
/// assert_eq!(py_array.readonly().as_slice().unwrap(), &[1, 2, 3]);
/// assert!(py_array.resize(100).is_err()); // You can't resize owned-by-rust array.
/// });
/// ```
pub trait IntoPyArray {
type Item: Element;
type Dim: Dimension;
fn into_pyarray<'py>(self, _: Python<'py>) -> &'py PyArray<Self::Item, Self::Dim>;
}
impl<T: Element> IntoPyArray for Box<[T]> {
type Item = T;
type Dim = Ix1;
fn into_pyarray<'py>(self, py: Python<'py>) -> &'py PyArray<Self::Item, Self::Dim> {
let len = self.len();
let strides = [mem::size_of::<T>() as npy_intp];
unsafe { PyArray::from_boxed_slice(py, [len], strides.as_ptr(), self) }
}
}
impl<T: Element> IntoPyArray for Vec<T> {
type Item = T;
type Dim = Ix1;
fn into_pyarray<'py>(self, py: Python<'py>) -> &'py PyArray<Self::Item, Self::Dim> {
self.into_boxed_slice().into_pyarray(py)
}
}
impl<A, D> IntoPyArray for ArrayBase<OwnedRepr<A>, D>
where
A: Element,
D: Dimension,
{
type Item = A;
type Dim = D;
fn into_pyarray<'py>(self, py: Python<'py>) -> &'py PyArray<Self::Item, Self::Dim> {
let strides = self.npy_strides();
let dim = self.raw_dim();
let boxed = self.into_raw_vec().into_boxed_slice();
unsafe { PyArray::from_boxed_slice(py, dim, strides.as_ptr(), boxed) }
}
}
/// Conversion trait from rust types to `PyArray`.
///
/// This trait takes `&self`, which means **it alocates in Python heap and then copies
/// elements there**.
/// # Example
/// ```
/// use numpy::{PyArray, ToPyArray};
/// pyo3::Python::with_gil(|py| {
/// let py_array = vec![1, 2, 3].to_pyarray(py);
/// assert_eq!(py_array.readonly().as_slice().unwrap(), &[1, 2, 3]);
/// });
/// ```
///
/// This method converts a not-contiguous array to C-order contiguous array.
/// # Example
/// ```
/// use numpy::{PyArray, ToPyArray};
/// use ndarray::{arr3, s};
/// pyo3::Python::with_gil(|py| {
/// let a = arr3(&[[[ 1, 2, 3], [ 4, 5, 6]],
/// [[ 7, 8, 9], [10, 11, 12]]]);
/// let slice = a.slice(s![.., 0..1, ..]);
/// let sliced = arr3(&[[[ 1, 2, 3]],
/// [[ 7, 8, 9]]]);
/// let py_slice = slice.to_pyarray(py);
/// assert_eq!(py_slice.readonly().as_array(), sliced);
/// pyo3::py_run!(py, py_slice, "assert py_slice.flags['C_CONTIGUOUS']");
/// });
/// ```
pub trait ToPyArray {
type Item: Element;
type Dim: Dimension;
fn to_pyarray<'py>(&self, _: Python<'py>) -> &'py PyArray<Self::Item, Self::Dim>;
}
impl<T: Element> ToPyArray for [T] {
type Item = T;
type Dim = Ix1;
fn to_pyarray<'py>(&self, py: Python<'py>) -> &'py PyArray<Self::Item, Self::Dim> {
PyArray::from_slice(py, self)
}
}
impl<S, D, A> ToPyArray for ArrayBase<S, D>
where
S: Data<Elem = A>,
D: Dimension,
A: Element,
{
type Item = A;
type Dim = D;
fn to_pyarray<'py>(&self, py: Python<'py>) -> &'py PyArray<Self::Item, Self::Dim> {
let len = self.len();
if let Some(order) = self.order() {
// if the array is contiguous, copy it by `copy_ptr`.
let strides = self.npy_strides();
unsafe {
let array = PyArray::new_(py, self.raw_dim(), strides.as_ptr(), order.to_flag());
array.copy_ptr(self.as_ptr(), len);
array
}
} else {
// if the array is not contiguous, copy all elements by `ArrayBase::iter`.
let dim = self.raw_dim();
let strides = NpyStrides::from_dim(&dim, mem::size_of::<A>());
unsafe {
let array = PyArray::<A, _>::new_(py, dim, strides.as_ptr(), 0);
let data_ptr = array.data();
for (i, item) in self.iter().enumerate() {
data_ptr.add(i).write(item.clone());
}
array
}
}
}
}
enum Order {
Standard,
Fortran,
}
impl Order {
fn to_flag(&self) -> c_int {
match self {
Order::Standard => 0,
Order::Fortran => 1,
}
}
}
trait ArrayExt {
fn npy_strides(&self) -> NpyStrides;
fn order(&self) -> Option<Order>;
}
impl<A, S, D> ArrayExt for ArrayBase<S, D>
where
S: Data<Elem = A>,
D: Dimension,
{
fn npy_strides(&self) -> NpyStrides {
NpyStrides::new(
self.strides().iter().map(|&x| x as npyffi::npy_intp),
mem::size_of::<A>(),
)
}
fn order(&self) -> Option<Order> {
if self.is_standard_layout() {
Some(Order::Standard)
} else if self.ndim() > 1 && self.raw_view().reversed_axes().is_standard_layout() {
Some(Order::Fortran)
} else {
None
}
}
}
/// Numpy strides with short array optimization
enum NpyStrides {
Short([npyffi::npy_intp; 8]),
Long(Vec<npyffi::npy_intp>),
}
impl NpyStrides {
fn as_ptr(&self) -> *const npy_intp {
match self {
NpyStrides::Short(inner) => inner.as_ptr(),
NpyStrides::Long(inner) => inner.as_ptr(),
}
}
fn from_dim<D: Dimension>(dim: &D, type_size: usize) -> Self {
Self::new(
dim.default_strides()
.slice()
.iter()
.map(|&x| x as npyffi::npy_intp),
type_size,
)
}
fn new(strides: impl ExactSizeIterator<Item = npyffi::npy_intp>, type_size: usize) -> Self {
let len = strides.len();
let type_size = type_size as npyffi::npy_intp;
if len <= 8 {
let mut res = [0; 8];
for (i, s) in strides.enumerate() {
res[i] = s * type_size;
}
NpyStrides::Short(res)
} else {
NpyStrides::Long(strides.map(|n| n as npyffi::npy_intp * type_size).collect())
}
}
}
/// Utility trait to specify the dimention of array
pub trait ToNpyDims: Dimension {
fn ndim_cint(&self) -> c_int {
self.ndim() as c_int
}
fn as_dims_ptr(&self) -> *mut npyffi::npy_intp {
self.slice().as_ptr() as *mut npyffi::npy_intp
}
fn to_npy_dims(&self) -> npyffi::PyArray_Dims {
npyffi::PyArray_Dims {
ptr: self.as_dims_ptr(),
len: self.ndim_cint(),
}
}
fn __private__(&self) -> PrivateMarker;
}
impl<D: Dimension> ToNpyDims for D {
fn __private__(&self) -> PrivateMarker {
PrivateMarker
}
}
/// Types that can be used to index an array.
///
/// See
/// [IntoDimension](https://docs.rs/ndarray/latest/ndarray/dimension/conversion/trait.IntoDimension.html)
/// for what types you can use as `NpyIndex`.
///
/// But basically, you can use
/// - [tuple](https://doc.rust-lang.org/nightly/std/primitive.tuple.html)
/// - [array](https://doc.rust-lang.org/nightly/std/primitive.array.html)
/// - [slice](https://doc.rust-lang.org/nightly/std/primitive.slice.html)
// Since Numpy's strides is byte offset, we can't use ndarray::NdIndex directly here.
pub trait NpyIndex: IntoDimension {
fn get_checked<T>(self, dims: &[usize], strides: &[isize]) -> Option<isize>;
fn get_unchecked<T>(self, strides: &[isize]) -> isize;
fn __private__(self) -> PrivateMarker;
}
impl<D: IntoDimension> NpyIndex for D {
fn get_checked<T>(self, dims: &[usize], strides: &[isize]) -> Option<isize> {
let indices_ = self.into_dimension();
let indices = indices_.slice();
if indices.len() != dims.len() {
return None;
}
if indices.iter().zip(dims).any(|(i, d)| i >= d) {
return None;
}
Some(get_unchecked_impl(
indices,
strides,
mem::size_of::<T>() as isize,
))
}
fn get_unchecked<T>(self, strides: &[isize]) -> isize {
let indices_ = self.into_dimension();
let indices = indices_.slice();
get_unchecked_impl(indices, strides, mem::size_of::<T>() as isize)
}
fn __private__(self) -> PrivateMarker {
PrivateMarker
}
}
fn get_unchecked_impl(indices: &[usize], strides: &[isize], size: isize) -> isize {
indices
.iter()
.zip(strides)
.map(|(&i, stride)| stride * i as isize / size)
.sum()
}
#[doc(hidden)]
pub struct PrivateMarker;