-
Notifications
You must be signed in to change notification settings - Fork 218
/
Copy pathex02.py
45 lines (35 loc) · 1.36 KB
/
ex02.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
Find the global maximum for binary function: f(x) = y*sim(2*pi*x) + x*cos(2*pi*y)
'''
from math import sin, cos, pi
from gaft import GAEngine
from gaft.components import BinaryIndividual
from gaft.components import Population
from gaft.operators import TournamentSelection
from gaft.operators import UniformCrossover
from gaft.operators import FlipBitBigMutation
# Built-in best fitness analysis.
from gaft.analysis.fitness_store import FitnessStore
from gaft.analysis.console_output import ConsoleOutput
# Define population.
indv_template = BinaryIndividual(ranges=[(-2, 2), (-2, 2)], eps=0.001)
population = Population(indv_template=indv_template, size=50).init()
# Create genetic operators.
#selection = RouletteWheelSelection()
selection = TournamentSelection()
crossover = UniformCrossover(pc=0.8, pe=0.5)
mutation = FlipBitBigMutation(pm=0.1, pbm=0.55, alpha=0.6)
# Create genetic algorithm engine.
# Here we pass all built-in analysis to engine constructor.
engine = GAEngine(population=population, selection=selection,
crossover=crossover, mutation=mutation,
analysis=[ConsoleOutput, FitnessStore])
# Define fitness function.
@engine.fitness_register
def fitness(indv):
x, y = indv.solution
return y*sin(2*pi*x) + x*cos(2*pi*y)
if '__main__' == __name__:
engine.run(ng=100)