forked from emptymalei/WhyMathematica
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenfoldsLaw.nb
4994 lines (4638 loc) · 187 KB
/
benfoldsLaw.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 9.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 190864, 4985]
NotebookOptionsPosition[ 185704, 4808]
NotebookOutlinePosition[ 186062, 4824]
CellTagsIndexPosition[ 186019, 4821]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Prepare", "Subsection",
CellChangeTimes->{{3.609688823156526*^9, 3.609688824346607*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"SetDirectory", "[",
RowBox[{"NotebookDirectory", "[", "]"}], "]"}]], "Input",
CellChangeTimes->{{3.6096888273221283`*^9, 3.609688841668098*^9}}],
Cell[BoxData["\<\"/Users/leima/GitHub/WhyMathematica/exoplanets\"\>"], \
"Output",
CellChangeTimes->{3.609688842297122*^9, 3.609697563203762*^9,
3.6097694372323217`*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Benford\[CloseCurlyQuote]s Law", "Section",
CellChangeTimes->{{3.609683708339014*^9, 3.60968371172128*^9}, {
3.609700779802545*^9, 3.609700779964449*^9}}],
Cell[CellGroupData[{
Cell["Introduction to Benford\[CloseCurlyQuote]s Law", "Subsection",
CellChangeTimes->{{3.609683716250141*^9, 3.609683722232896*^9}, {
3.6097007837863073`*^9, 3.609700783890522*^9}}],
Cell["\<\
Wikipedia:https://en.wikipedia.org/wiki/Benford\[CloseCurlyQuote]s_law\
\>", "Text",
CellChangeTimes->{{3.609683781834401*^9, 3.609683799127109*^9}}],
Cell["\<\
The distribution of first digits, according to Benford\[CloseCurlyQuote]s \
law. Each bar represents a digit, and the height of the bar is the percentage \
of numbers that start with that digit. (From that wikipedia page)\
\>", "Text",
CellChangeTimes->{{3.6096838569290667`*^9, 3.6096838741277018`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Import", "[",
"\"\<https://upload.wikimedia.org/wikipedia/commons/thumb/4/46/Rozklad_\
benforda.svg/512px-Rozklad_benforda.svg.png\>\"", "]"}]], "Input",
CellChangeTimes->{{3.609683835824844*^9, 3.6096838399334793`*^9}}],
Cell[BoxData[
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztnX2sVdWZ/+/vJWPnJc7YdvLrTKszmulPbW06bbVAFSpSER21ij+sjFIq
VvGt4XWkVJGXCsj1hRrqaMRGG1vNaARpmlBiRdL+AQwSEiyxCURiIZBoEZUC
Atr9O89mb7hc7z53n/3cxf6edT+f5NG9zln78Nz17LW/96xnr+eeOm7CyJv+
Z0dHx5SPNf4z8vppQydPvn76Vf+70bhg+tQbx/2vxsGs/9H4T6OPvZgAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAACIYX92s6tV/Ywyr7Vyfl/51v2zPOcDAADEQnddq6JzIfW/6mf2
xXl9/RkAAAAqNNPYnr579/SdvPv73f/f03fvovNb9a2nf7eVn6HI7yIf+2o9
AgAAoE6K1tjLfPfuSRtb6d/136/qWzPd7+24lfO9axwAAABKNNPDMv3y41bW
Ecqu6/em1WU/s6z+l/m3e/p5AAAA2o0qeljmnLKv9dRu1bdW/PXqf29rHAAA
AO1Aq3rYm/aWyQm0sv7fmw/H4/t/0ToD+g8AAO1Kq+vcva2996bxPeXbW83/
dz+/zM9R9LlFfZr5WMZ3AAAAAAAAAAAAiJPe1ix5dhgAACAuWslDAgAAQJyg
/wAAAP2H3tb/AQAAIF7K7m3uyi9+8Yvk3nvvlbR58+YlP/jBD2r3o8juvvvu
ZM6cObX7UWTf//73a/ehXf0jtj5TnrezZs1KrW4/2nHszH7961+HkjBwUEX/
p06dmrz99tuS9rvf/S4ZOHBg7X4U2c0335w8+OCDtftRZGeddVbtPrSrf8TW
Z8rz1vTVrG4/2nHszMaPHx9KwqAFqtYX7Yp9j1Bl27ZtyeDBg+t2o5AJEyYk
jz76aN1uFPLFL36xbheaouwfsfWhPG9/+MMfpqaK8tgZt9xyS90uQEaZ/X/N
UNb/d955R9q/n//858lvf/vbut0oRH2eKvtHbH0oz9tf/vKXqamiPHaG+rUH
5VG+1v74xz9KrzU9/PDDyfLly+t2o5DRo0fX7UJTlP0jtj6U5+3TTz+dmirK
Y2eg//GgrP+s//tQXyNW9o/Y+lCet6z/+0D/40FZ//fv3y/9HWzDhg3J1q1b
63ajkKVLl9btQlOU/SO2PpTn7WuvvZaaKspjZ6D/8aCs/wAAoAX6Hw/K+r9v
375kyZIldbtRyNq1a5PNmzfX7UYh9gybMsr+EVsfyvN248aNqamiPHYG+h8P
yvrP8/8+1Oepsn/E1ofyvOX5fx/q1x6UR/la++CDD5Lt27fX7UYhu3btSvbs
2VO3G4W88cYbdbvQFGX/iK0P5Xlr3yvMVFEeOwP9jwdl/QcAAC3Q/3hQ1v93
3303mT17dt1uFPLcc88lq1evrtuNQqZMmVK3C01R9o/Y+lCetytWrEhNFeWx
M9D/eFDW//feey/p7Oys241Cli1blqxbt65uNwqZMWNG3S40Rdk/YutDed6u
XLkyNVWUx85A/+NBWf8BAEAL9D8elPX/0KFD0nuwdu7cmezevbtuNwpRrnFi
KPtHbH0oz9u33norNVWUx85A/+NBWf/Z/+dDfZ4q+0dsfSjPW/b/+VC/9qA8
ytca9X99qNeIVfaP2PpQnrfU//WB/seDsv4DAIAW6H88KOv/3r17peuc2vqw
8veIxYsX1+1CU5T9I7Y+lOft+vXrU1NFeewM9D8elPWf/L8P9Xmq7B+x9aE8
b8n/+1C/9qA8ytca9X99qNeIVfaP2PpQnrfU//WB/seDsv4DAIAW6H88KOs/
6/8+1Oepsn/E1ofyvGX934f6tQflUb7WqP/rQ71GrLJ/xNaH8ryl/q8P9D8e
lPUfAAC0QP/jQVn/Dx48mGzcuLFuNwqxZ7CU64gq73EylP0jtj6U5+2OHTtS
U0V57Az0Px6U9Z/8vw/1earsH7H1oTxvyf/7UL/2oDzK1xr1f32o14hV9o/Y
+lCet9T/9YH+x4Oy/gMAgBbofzwo6z/1f32o14hV9o/Y+lCet9T/9YH+x4Oy
/pP/96E+T5X9I7Y+lOct+X8f6tcelEf5Wvvwww/TOqyqWH1Ye0ZBFeXn1w1l
/4itD+V5a+uKZqooj52B/seDsv4DAIAW6H88KOs/6/8+1Oepsn/E1ofyvGX9
34f6tQflUb7WbA120aJFdbtRiO3TsX1iqsyfP79uF5qi7B+x9aE8b+33OuXf
7ZTHzkD/40FZ/wEAQAv0Px6U9Z/6vz6U9zgZyv4RWx/K85b6vz7Q/3hQ1n/y
/z7U56myf8TWh/K8Jf/vQ/3ag/IoX2vvv/9+smrVqrrdKGTTpk3Jtm3b6naj
kBUrVtTtQlOU/SO2PpTn7ZYtW1JTRXnsDPQ/HpT1HwAAtED/dejo6DhiZV7v
jrL+U//Xh3qNWGX/iK0P5XlL/V8f6L8GPWl+s9d7Qln/yf/7UJ+nyv4RWx/K
85b8vw/1a6+/Epv+U//Xh/Lz64ayf8TWh/K8pf6vD/Rfi+7r/Er6f/75lyUX
XTSusn3jG2Mrnzt48FXJf/3XkmA/24EDB5JDhw4F+3wvyvc4Q9k/Yutj3759
dbtQiO0rNlNFeewM9F+TKt//hwwZkpx55pnJZZddltx0003JgAEDknPPPTe9
Bu33UHstr0dlNdGsvXbt2rQ9e/bstG1s3749PX788ceP6Xvyyec2/v2FDRvR
sEHZ8azs+FtZe1zWviNrD2vYkIbNb9jXsvfG9NLXju/s1vfS5JxzBiWbN29O
fZowYcKR33dsj635t2TJ4d8PbL3X2mX62s9o7R//+MfpGrEd21gYNjY99bXx
MXrqa2Nl2Dhb28bdxt+OOzs70/fsmeBW+37zm99M2/a6tZvFNH/muEzfVuLf
rO/555+ftm2srJ3ve7Zxt/E3LB72Xp4TbaVvKzHt3nfEiBHJdddd1zT+zWIa
Ov6DBw/utW8rMe3r+F999dWl+x7v+Nvav81d7/wPFf+JEyf2yfzvi/jnemCv
XXzxxalWDB06NAE9FNf/P/vZf8u0uIrd27CRjvPvSO6558FgPxs1Yn0o+0ds
fSjXsKX+rw++/2vQDs//+fTfa2H1HwCgv4H+66C+/8+n//c3bJKs/tta4c6d
O4N9vhfl7ziGsn/E1ke+7q+I1XY2U0V57Az0Px609d/y/8Nk9Z89Yj6U/SO2
PpT3FbH/z4f6tQfl0db/+xp2u6z+UyPWh7J/xNaHcg1b6v/6QP/jQVv/yf8D
ACiB/seDtv4vSI7uEdTT/5deeil59dVXg32+l4ceeqhuF5qi7B+x9ZHv7VNk
zZo1qamiPHYG+h8P2vpP/t+D+jxV9o/Y+lDOYZP/96F+7UF5tPX/wYbNldV/
asT6UPaP2PpQrmFL/V8f6H886Ot/p6z+UyPWh7J/xNaHcg1b6v/6QP/jQVv/
Wf/3oD5Plf0jtj6U17BZ//ehfu1BebT1n+f/PKg/I6bsH7H1ofwMG8//+UD/
40Fb/73G/j8AgL4E/Y8Hbf2n/q8H5fVrQ9k/YutDuYYt9X99oP/xoK3/5P89
qM9TZf+IrQ/lHDb5fx/q1x6UR1v/+f7vQVm/DGX/iK0P5e+wfP/3gf7Hg7b+
k/8HAFAC/Y8Hbf3n+X8P6s+IK/tHbH0oP8PO8/8+0P940NZ/8v8e1Oepsn/E
1odyDpv8vw/1aw/Ko63/1P/zoF4jTtk/YutDuYYd9f98oP/xgP5XB43woewf
sfWhrGHovw/0Px609Z/1fw/q81TZP2LrQ3kNm/V/H+rXHpRHW/95/s+D+jNi
yv4RWx/Kz7Dx/J8P9D8etPXfa+z/AwDoS9D/eNDW//sadrus/m/atCnZtm1b
sM/3smLFirpdaIqyf8TWx6pVq+p2oZAtW7akpory2Bnofzxo6z/5fw/q81TZ
P2LrQzmHTf7fh/q1B+XR1n/q/3pQ1i9D2T9i60O5hi31f32g//Ggrf/k/wEA
lED/40Fb/+9t2EhZ/V++fHmyYcOGYJ/vZf78+XW70BRl/4itj0WLFtXtQiG2
dqK8fqI8dgb6Hw/a+k/+34P6PFX2j9j6UM5hk//3oX7tQXm09Z/6fx7Ua8Qp
+0dsfSjXsKP+nw/0Px709X+urP7v2bMn2b9/f7DP9/LWW2/V7UJTlP0jtj52
7dpVtwuF2O9Oyr8/KY+dgf7Hg7b+s/7vQX2eKvtHbH0or2Gz/u9D/dqD8mjr
P/V/PajXiFX2j9j6UK5hS/1fH+h/PGjrv9fY/wcA0Jeg//Ggrf/U//WgXiNW
2T9i60O5hi31f32g//Ggrf/k/z2oz1Nl/4itD+UcNvl/H+rXHpRHW//vTzVc
Vf+thqjyc9jr16+v24WmKPtHbH1s3LixbhcK2bFjR2qqKI+dgf7Hg7b+k/8H
AFAC/Y8Hbf2n/q8H9Rqxyv4RWx/KNWyp/+sD/deho6PjiBW93v29rmjrP/l/
D+rzVNk/YutDOYdN/t+H+rXXX+hJ84veK0Jb/1n/BwBQAv3XJD79p/6vB+Xn
1wxl/4itD+UattT/9YH+a9Jd/3tb+zcmTpyYvP7668nOnTuTt99+O/nDH/6Q
7nv+85//nHz44Yfpa3YvNOx+aG372yjGu+++m7aNDz74ID3+05/+dEzff/mX
i7us5eda/kB2vCBrd2bt+7v0nZf9/4KSfXv63EnJnXfOPfJ3XHbv3p288847
6bH9/Q/zL/9bG3Y/sHaZvvYzWvupp55K14jt2MbCsLHpqa+Nj9FT31xnbJyt
beNu42/H7733Xvre+++/33Lfm266KW3b69ZuFlM7p2zfVuLfrO93v/vdtG1j
Ze38b7LYuNv4GxYPey+/X7fSt5WYdu+7ePHi5Fe/+lXT+DeLaej429j11reV
mPZ1/KdOnVq67/GOv639v/DCC+75Hyr+06ZN65P53xfxz/XAXjONMK248cYb
E9ChN51v9t6wYcOSgQMHJmPGjEmvu+HDhyeXXHJJel3YHLDXnnjiibTvyy+/
nLbz56IWLlyYtg27Nuz4mWeeOabvKacMzrT4ii65/DnZ8bez9visPT1rX9qw
izIdvzJ7b1wvfe14Rre+VyZDhlyQbN26NfVp5syZR56beu2111L/7DkvY+nS
pWm7TF/7Ga29bNmyI+/ZWBg2Nj31tfExeuprY2XYOFvbxt3G344feeSR9L3V
q1e33Hf69Olp2163drOY2jll+7YS/2Z9899PbKysbWNp2Ljb+BsWD3vP4tNq
31Zi2r3v9ddfn0yePLlp/JvFNHT8zb/e+rYS076O/1133VW67/GOv+2dfP75
593zP1T87XfPvpj/fRH/XA/stdGjR6daceGFFyagQZl1/vZ9/o/8PwCAEqz/
a1Ck682eC+yOtv5T/9eDeo1YZf+IrQ/lGrbU//WB/mvQfY9flfy/tv6z/8+D
+jxV9o/Y+lDew8b+Px/q1x6UR1v/qf/rQb1GrLJ/xNaHcg1b6v/6QP/jQVv/
yf8DACiB/seDtv5b/d/LZPXfnv9ft25dsM/3MmPGjLpdaIqyf8TWR2dnZ90u
FLJy5crUVFEeOwP9jwdt/Sf/70F9nir7R2x9KOewyf/7UL/2oDza+s/6PwCA
Euh/PGjrv9XzmyWr/1anM6+jpYg9w6aMsn/E1sf27dvrdqEQq+uX1/ZTRHns
DPQ/HrT1n/V/D+rzVNk/YutDeQ2b9X8f6tcelEdb/63+7xhZ/Td9yOuQKmJ1
RJVR9o/Y+rDfn1SxvZPK+yeVx85A/+NBW//J/wMAKIH+x4O2/lv93/Gy+m9/
vyP/eyGK5H8HRRVl/4itj/zv3yhi6zrKazvKY2eg//Ggrf/k/z2oz1Nl/4it
D+UcNvl/H+rXHpRHW/+p/+tBOcdpKPtHbH0o17Cl/q8P9D8etPWf/D8AgBLo
fzxo6z/1fz2o14hV9o/Y+lCuYUv9Xx/ofzxo67/l/0fI6v9zzz2XrF69Otjn
e5kyZUrdLjRF2T9i62P27Nl1u1DIihUrUlNFeewM9D8etPWf9X8AACXQ/3jQ
1n/q/3pQrxGr7B+x9aFcw5b6vz7Q/3jQ1n/2/3lQn6fK/hFbH8p72Nj/50P9
2oPyaOt/Z8PGyer/2rVrk82bNwf7fC/qdUSV/SO2PpYsWVK3C4XY/jrlPXbK
Y2eg//Ggrf/k/wEAlED/40Fb/6n/60G9Rqyyf8TWh3INW+r/+kD/40Fb/8n/
e1Cfp8r+EVsfyjls8v8+1K89KI+2/tvz/3fK6v/OnTuT3bt3B/t8L8rfcQxl
/4itD+VnJ6yus3JtZ+WxM9D/eNDWf/L/AABKoP/xoK3/1P/1oF4jVtk/YutD
uYYt9X99oP/xoK3/1P/1oF4jVtk/YutDuYYt9X99oP/xoK3/rP8DACiB/seD
tv7z/J8H9WfElP0jtj6Un2Hj+T8f6H88aOs/+/88qM9TZf+IrQ/lPWzs//Oh
fu1BebT1n/q/HtRrxCr7R2x9KNewpf6vD/Q/HrT1n/w/AIAS6H88aOs/3/89
qH9HVPaP2PpQ/g7L938f6H88aOs/+X8P6vNU2T9i60M5h03+34f6tQfl0dZ/
nv/3oP6MuLJ/xNaH8toJz//7QP/jQVv/yf8DACiB/seDtv5T/8+Deo04Zf+I
rQ/lGnbU//OB/scD+l8dNMKHsn/E1oeyhqH/PtB/HTo6Oo5Ymde7o63/rP8D
ACiB/mvQk+Y3e70ntPWf5/88qD8jpuwfsfWh/Awbz//5QP81iU//2f/nQX2e
KvtHbH0o72Fj/58P9Wuvv1JF/0eNGpVMmjQpWbRoUfLss88mM2fOTObMmZMc
PHgw2bt3b/pafh+07xzWfuONN9K25dCsbbzzzjvp8Zo1a47pe+qpF2RafHPD
xnbRdTueeESnD7dnZ+0bk8N1f+7LXjeb0ktfO76nW9+xyTXXjD3yu/7SpUuP
zPsdO3ak/uV1QNavX5+2y/S1nzEfl61bt6bHeT7RxqanvjY+Rk998+9y9nnW
tnG38bfj/O+Ub9mypeW+jzzySNq2163dLKZ2Ttm+rcS/Wd8FCxakbRsra9s4
GzbuNv6GxcPes/i02reVmHbv++CDDyY/+clPmsa/WUxDx3/evHm99m0lpn0d
/8cee6x03+Mdf/s5fvOb37jnf6j4v/DCC30y//si/rke2GsLFy5MtWLkyJEJ
6NA9z9+K/t9www3JU089lbz44ovJK6+8kjz//PPptf/BBx8kBw4cSF/L16Ns
TdTau3btStubNm1K28a+ffvS49dff/2YvqedNjzT4mkNm5wdd2bHd2XtWVl7
fheNn5od35u9d3eFvjcnt946OdmzZ0/q04YNG47MS5uP5t/27dvTts1Fa5fp
az+jte1nNuzYxsKwsWm1r42VYeNsbRt3G387/v3vf5++9+abb7bc1/5v2OvW
bhbTVvq2Ev8yfW2srJ3fI23cbfwNi4e9l+tIK31biSnxJ/7E/6N9cz2w1+z3
FtOKa6+9NgENetL2eNb/qf/rQb1GrLJ/xNaHcg1b6v/6YP1fgyJdj0f/yf97
UJ+nyv4RWx/KOWzy/z7Ur73+Qtc9fj3lANp//98D2Xq/pv7b+l2+XqhIvg6q
irJ/xNZHvv6tiK3n5/kDRZTHzkD/40Fb/73G/n8AgL4E/Y8Hbf2n/p8H9Rpx
yv4RWx/KNeyo/+cD/Y8Hbf235/kvk9X/ZcuWJevWrQv2+V5mzJhRtwtNUfaP
2Pro7Oys24VCbI9bvldOEeWxM9D/MPSUz2+W4+8LtPWf9X8AACXQ/zCU0fb+
pf/U//WgXiNW2T9i60N57yT1f32g//Ggrf/s//OgPk+V/SO2PpT3sLH/z4f6
tRcbff2dvyva+m/1f8fL6r/VCLP6v6rkdVFVUfaP2PpYvnx53S4UYmsnyusn
ymNnoP/Hj6Ka/n2Ftv6T/wcAUAL9D0NPz/f1b/1f0LAxsvpv68PK3yMWL15c
twtNUfaP2PpQrk9sf+sn/xtBiiiPnYH+h6W3v+fTl2jrP/l/D+rzVNk/YutD
OYdN/t+H+rXXzvRUwzck2vpP/V8P6jVilf0jtj6Ua9hS/9cH+h+GorX+kL8H
aOs/+X8AACXQ/zCEzvX3hLb+s/7vQX2eKvtHbH0or2Gz/u9D/dprZ46n9hva
+k/9Xw/qNWKV/SO2PpRr2FL/1wf6Hwbq/7H+DwCgDPofBur/d7f7Uw1X1X97
Bku5jqjyHidD2T9i62Pjxo11u1DIjh07UlNFeewM9D8etPWf/L8H9Xmq7B+x
9aGcwyb/70P92oPyaOt/2Pq/dn8/6aRTk9NOG1HJPvOZryWnnPL1yud/4hOn
BN2HpF4jVtk/6v/6UK5hS/1fH+h/PGjrf9j8v+n/X/3V9bX598//PFp6HzIA
QHfQ/3jQ1v+w9X/9+v+9hk2X1X/1GrHK/lH/14dyDVvq//pA/+NBW//D5v/9
+j8m+x1AU//V56myf+T/fSjnsMn/+1C/9tod6v/l9mDD5grrv9UnuE9W/5Wf
XzeU/bPav/v376/bjUKUx86w+smq7N27NzVVlMfOQP/Dc7xqAWrrv9fI/wMA
9CXo//HheNQC1NZ/1v89qM9TZf9Y//ehvIbN+r8P9WuvXTmedX9ytPXf1tdH
Cuu/7U2cKqv/8+fPD/bZfYGyf7YHy/YAqqI8dsaiRYvqdqEQm/fKv9spj52B
/tdH/6r/5zXW/wEA+hL0vz76l/6Hrf/r1/+7G3aPrP4r73EylP2j/q8P5Rq2
1P/1gf7XR//Sf/L/HtTnqbJ/5P99KOewyf/7UL/2YqZ/6b/trbtdWP+nNWym
rP6vWLEi2Gf3Bcr+bdq0Kdm2bVvdbhSiPHbGqlWr6nahkC1btqSmivLYGeh/
ffQv/fca+X8AgL4E/a+P/qX/1P/1oF4jVtk/6v/6UK5hS/1fH+h/PGjrP/l/
D+rzVNk/8v8+lHPY5P99qF977UzIvf49oa3/1P/1oPz8uqHsH/V/fSjXsKX+
rw/0Pwxddf94/Q6gr/+dwvpv+xMfkNV/5XucoezfgQMHkkOHDtXtRiHKY2fs
27evbhcKOXjwYGqqKI+dgf6HAf3vbqz/e1Cfp8r+sf7vQ3kNm/V/H+rXXruC
/nc36v96UK8Rq+wf9X99KNewpf6vD/Q/DFXr//f0XtlztfXfa+z/AwDoS9B/
HYr0vez6gbb+W359krD+39mwObL6r/wdx1D2b/PmzcnOnTvrdqMQ5bEz1q5d
W7cLhVhtZzNVlMfOQP+1iFf/yf97UJ+nyv6R//ehnMMm/+9D/drrb/S2/t8M
bf2n/q8H9Rqxyv5R/9eHcg1b6v/6QP+16E3jm70/ZMiQ5Mwzz0wuu+yy5Kab
bkoGDBiQnHvuuekeFNuHaq/lz6PYM1HWztenZs+enbaN7du3p8ePP/74MX1P
PvncTO9GNGxQdjwrO/5W1h6XtfO/9Wff+Ydkx3dm742p0PfS5JxzBqVrucaE
CROO/L5jf2Pr8ssvT0444YIu3+UHZZ+xMPvMfO3hjuy9cVn7W1l7VtYelP18
djypdN9/+IfhyXe+8510rAwbZxszG3cbfzvu7OxM37N7grVb6ZvfR+x1azeL
aSt9W4l/mb5LlixJ2/nfPbMYWawMi529l9dEa6Wv/d/aRfG39+zzWu1rflvb
fg7Dju3nM+znbbUv8Sf+qvHP9cBeu/jii1OtGDp0aAI6ePRf+/v/gi6/Iyh+
/7818fx94tDf/x966KFgn90XKPv30ksvJa+++mrdbhSiPHZGru2KrFmzJjVV
lMfO4Pu/Ft31vbd2V7T1n/y/B/V5quwf+X8fyjls8v8+1K+9/ka8+X/q/3pQ
rxGr7B/1f30o17Cl/q8P9D8e9PWf+r9VUb7HGcr+Uf/Xh3INW+r/+kD/40Fb
/1n/96A+T5X9Y/3fh/IaNuv/PtSvPSiPtv7z/J8H9WfElP3j+T8fys+w8fyf
D/Q/HrT132vU/wUA6EvQ/3jQ1n/q/3pQXr82lP2j/q8P5Rq21P/1gf7Hg7b+
k//3oD5Plf0j/+9DOYdN/t+H+rUH5dHWf77/e1DWL0PZP77/+1D+Dsv3fx/o
fzxo67/XyP8DAPQl6H88aOs/z/97UH9GXNk/nv/3ofwMO8//+0D/40Fb/8n/
e1Cfp8r+kf/3oZzDJv/vQ/3ag/Jo6z/1/zyo14hT9o/6fz6Ua9hR/88H+h8P
6D/6XxfK/qH/PpQ1DP33gf7Hg7b+s/7vQX2eKvvH+r8P5TVs1v99qF97UB5t
/ef5Pw/qz4gp+8fzfz6Un2Hj+T8f6H88aOu/19j/BwDQl6D/8aCt//c17HZh
/Z/WsJmy+r9ixYpgn90XKPu3adOmZNu2bXW7UYjy2BmrVq2q24VCtmzZkpoq
ymNnoP/xoK3/5P89qM9TZf/I//tQzmGT//ehfu1BebT1n/q/HpT1y1D2j/q/
PpRr2FL/1wf6Hw/a+u+19s7/mwa9+OKLtdm6detCXBIA0Mag//Ggrf/3Nmyk
sP6Pb9jUYPp/8cXXJH/919+tbH/xF+e4zj/99EEhLokjzJ8/P+jne1i+fHmy
YcOGut0oRHnsjEWLFtXtQiE275XXT5THzkD/40Fb//t3/n/UqJsdvpmd6zp/
4MCrQlwSR1C+j5D/96Gcwyb/70P92oPyaOt//67/59f/BdL6r1zDjvp/PpRr
2FH/zwf6Hw/6+j9XWP8tP3GfsP7fI63/b731VtDP97Bnz55k//79dbtRiPLY
Gbt27arbhULsdyfl35+Ux85A/+NBW/9Z//fpP+v/VWH934fyGjbr/z7Urz0o
j7b+9+/6v379v1Ja/5Vr2FL/14dyDVvq//pA/+NBW/+91t77//z677PQ+g8A
7Qf6Hw/a+t+/6//69d93fmj9V65hS/1fH8o1bKn/6wP9jwdt/Sf/79N/8v9V
If/vQzmHTf7fh/q1B+XR1v/7E09+Pbz+3514nrEPr/9TpPV//fr1QT/fg9WH
VX7GXnnsjI0bN9btQiE7duxITRXlsTPQ/3jQ1n+vkf9X1n8AaD/Q/3jQ1v/+
Xf/Xr/+XSuu/cg1b6v/6UK5hS/1fH+h/PGjrP/l/n/6T/68K+X8fyjls8v8+
1K89KI+2/nuN9X9l/QeA9gP9jwdt/af+r0/Dqf9bFer/+lCuYUv9Xx/ofzxo
6z/r/z79Z/2/Kqz/+1Bew2b934f6tQfl0db/BZnGquq/af90Yf331E4Or/+L
Fy8O+vke7Np47bXX6najEOWxM+z3J1Vs76Ty/knlsTPQ/3jQ1n+vkf9X1n8A
aD/Qfy06Ojp6fC23ZmjrP/V/fRpO/d+qUP/Xh3INW+r/+kD/dehJ43trd0Vb
/8n/+/Sf/H9VyP/7UM5hk//3oX7t9Tfi1X/q//r0n/q/VaH+rw/lGrbU//WB
/msRr/57jfy/sv4DQPuB/mvh0f9hw4Y17vMDkzFjxiTTpk1Lhg8fnlxyySXp
3ufdu3enrz3xxBNp35dffjlt53VRFy5cmLaNnTt3psfPPPPMMX1POWVwpidX
JEfX8udkx9/O2uOzdv4svdWtvSg5vL9+WGbjeulrxzO69b0yGTLkgmTr1q2p
TzNnzjxSN9We7b722muTE04YnvUdl507I2tflBytnzs9e2981v521v73hk3O
jq/I3pta0HdO1j7a9x//cUQyceLEdKwMG2cbMxt3G/8zzvhSo9+o7LyJ2bm3
Ze3RWXtecvg5iWE99B2QtUdl7fuy/sOy8xdmnzcsO+fYvmeffbk7/s36jhw5
Mm1brV1r58/bW4wsVobFzt5bunRpy33t/9Yuir+9Z5/XU99rrrkmue2223rs
az+jte3nMOzYfj7Dft5W+xbF344feeSR9L3Vq1cf0/fyyy/vta/937DXrd1s
TrfSt0z8x48fX7rv8Y7/ypUrkyeffLJp/JtdK6HjP3v27F7jX+Za6Yv453pg
r40ePTrVigsvvDABHeL9/k/+3/cdnvx/Vcj/+1DOYZP/96F+7fU34tV/r7H+
H1L/LU/5yiuv1GZvvvlm5esSAKqB/msR7/6/Bxo2S1j/rTbxvcL6f3dQ/f/0
pz+ffPKTYyvbxz/+/yqfe9JJ30z+4z9mV74ue8NqsFoNYFXs+URltm/fXrcL
hdicazbv6kZ57Az0Px609Z/1f5/+h13///znL6/Rv7uTu+7qrHxd9gbr/z6U
17BZ//ehfu1BebT1n/q/Pn0NW//Xr/8e/8LqP/V/fSjXsKX+rw/0Px609d9r
5P+19d9jYfUfAHoG/Y8Hbf23/WrjHeeH1n/b6zej8vnh9X+c6/zw+u/xL6z+
296sfC+YIvkeN1Xy/W+K2LqO8tqO8tgZ6H88aOs/+X+fvpL/rwr5fx/KOWzy
/z7Urz0oj7b+U//Xp69h6//69d/jX1j9p/6vD+UattT/9YH+x4O2/nuN/L+2
/nuM/D9AHaD/8aCt/7a3/jJh/b8hOVz/V1X/h7vOD6//Hv/C6v+yZcuSdevW
Bft8LzNmzKjbhaZ0dur+bmb1f81UUR47A/2PB239t/z/CGH9/05ytG6+ov6f
L67/Hv/C6v9zzz13pCa6IlOmTKnbhaZYDXtVVqxYkZoqymNnoP/xoK3/XmP9
X1v/Pcb6P0AdoP/xoK3/1P/1aqS2/nv8C6v/1P/1oVzDlvq/PtD/eNDWf/b/
+fSV/X9VYf+fD+U9bOz/86F+7UF5tPW/M/HViAmt/5Madqew/ntqJx8P/ff4
F1b/165dm2zevDnY53tRrxG7ZMmSul0oxPbXKe+xUx47A/2PB2399xr5f239
9xj5f4A6QP/jQVv/qf/r08j+W//XxvXxx3+aPPHEzyvZ7Nnzkvvu+1Hl8+3f
3rt3b+8TpCLU/60O9X99oP/xoK3/5P99+tp/8/+2vvs3f2P7C2+paN9o2BWV
zz/xxC8HfUZP/R6snMMm/+9D/dqD8mjrvz3/Xz2/Hl7/5zRsXuXzw+t/9b9N
fHz03+Nf7/r/iU/cWFtsP/Wpq4Pqv/L3V0P52Qmr66xc21l57Az0Px609d9r
5P891s75f7/++yy0/gPUBfofD9r6T/1fnw713/q/fv33xTa0/lP/tzrU//WB
/seDtv5T/9enr/23/q9f/32xDa3/1P+tDvV/faD/8aCt/15j/d9jrP9XN9b/
IVbQ/3jQ1n+e//PpEM//1RVbnv/TfYaN5/98oP/xoK3/7P/z6Wv/3v/n039f
bEPrv/o9WHkPG/v/fKhfe1Aebf2n/q9PX/tv/V+//vtiG1r/qf9bHer/+kD/
40Fb/71G/t9j5P+rG/l/iBX0Px609Z/v/z4d4vt/XbHtTf9ffHFl8sMfPpjM
nfujSnb11WMqn2v2n//5eNPYelH+Dsv3fx/ofzxo6z/5f5++kv+vK7a96f9V
V9l1d2tyuMZAFfui49zJjXl5XtPYelHOYZP/94H+x4O2/vP8v09fef6/rtj2
pv/XXXd7cvj323pi+6UvXdk0tl6Un2Hn+X8f6H88aOu/18j/e4z8f3ULr/8+
C63/EC/ofzxo6z/1/3z3eer/1RXb8Prvi21o/VeuYUf9Px/ofzyg/+h/kaH/
6H9VlDUM/feB/seDtv57jfV/j7H+X91Y/4dYQf/jQVv/ef7Pd5/n+b+6Ysvz
f7rPsPH8nw/0Px609Z/9f557PPv/dPf/+fXfF9ve9P+nP/1ZsnDhw5Vt2LDh
lc994IFFyX//97qm/nlg/58P9D8etPX/voaNd5wfWv+nNmxG5fPD67+ndtLx
0H+Pf6H13xfb8Prvi21v+n/WWRclnvoCHR0jHeeOS26+eWpT/zzY305S/vtJ
y5cvr9uFpqD/8aCt/14j/+8x8v/Vrd3z/wMHXldrbCdMuKupf1Af6H88aOs/
9X9991Hq/9YV2/D674tteP33re2E1H/q//pA/9uDjo6OY6wntPWf/L/vHkz+
v67Ytnv+36//nnkbVv/J//tA/9uDIs3virb+2/P/sxznh9b/uQ27t/L54fX/
btf54fXf419o/ffFNrz++2IbXv898zas/tucazbv6mb79u11u9AU9L89aH/9
9xr5f4+R/69u5P99sW2m/3v27ElefPHFWs186K+g/+1Bb2v/xnXXXZcsWLAg
efrpp9Pr+uGHH04effTR5NChQ8n+/fvT1zZs2JD23bp1a9reuXNn2l69enXa
NvI5+eqrrx7T97TTvpHNaauldkt2fG92fEfWvjNr35O1bd31tuTo+r+9N72X
vnY8r1vfG5Lrr7852b17d+rTyy+/nGq+Yft/Fy5cmPzlX16V9Z2enZvv+b4t
Obr+e0/2Xp4PviNrX9vl58prxc0p6Jt/lzza9+STr0xeeOGFdKwMG2cbMxt3
G/8hQy5NDj8PbefNzM7Nn0mfmrVtj8QD2XH3voOy9uSs/UDW/5bs/IXZ592S
nXNs369+9Yqm8T/ttMFNYpp/7pwm8T+nQkzzvlNT/bd4WlwNi7P5Z892m/7/
3d+NaiGm3eNvdSev7iX+H41pHv+///tLUv23+dBVL+zY5s1h/f9BhZjmfc8u
0fejMc3jf8YZFxwT023btqXtdevWpe0BA65tcq00i2ke/6+30Ld7/L+TXHXV
mI/E1LC98Y899ljysY99rtFvbMMubthF2fHohg1v2BVZ+4qsPTprX5T1vzA5
XD/R3hvZS187vuaYviec8H9TH7rH1LC5Ye18D39R/Lv27T7/Z8yYkc5/O7Z4
GBafnvrm94qe+naPabN7elHfXA/stZ/97GepVlx99dWFegKaFP0OMGrUqGTS
pEnJokWLkmeffTaZOXNmMmfOnOTgwYPJ3r1709dyzbQ5aO38e43V0LS2Yd9j
7XjNmjXH9D311AuyOX1zNpfseH52nN8z78jas7O2fW8bl90n8rk9pZe++X26
a9+xyTXXjD1S62Pp0qVH8n47duxIf86PfeyKrO+U7Nz8HjQu++yF2b81tsv9
amLWHpPdW8dmP9/h7y49951/xKe872c+883kySefPHJvs3G2MbNxt/EfNMju
U7kO3pmdm+vg97L2gobdnx1373teclT3xmb9FmTHuQ5Oz9p3fqSv6X+z+P/T
Pw1qEtP8c/N16p7iP6BCTPO+k1P9t3haXA2Ls/m3fv36VP//9m+vbCGm3eNv
v7deUdC3OKZ5/D/5yYvScbL5YD7l6zx2bPPmsP5PqxDTvO9XS/T9aEzz+H/2
s0OOiemWLVvS9sqVK9P2gAH/3uRaaRbTPP5DW+jbPf6jk0svHfWRmBoW1/vv
v7/xu13+e3uza6VoTtt4XN9L/IuvlRNPHJH60D2mhsXc2vnzhUXx79q3+/yf
O3duOv/t2OJhWHx66pvfK3rq2z2mze7pRX1zPbDX7PuSacXIkSObiw3I0Z7P
/3mN9X+Psf5f3Vj/98W22fq/xfbjH6/PP/u3lfcPhIb1f32663176j/1f333
Kur/1hXbdq//69d/z7wNrf/3JEe/57duofWf+r/QF5TJ/2vrP/v/fPdg9v/V
FVv2/4Xb/+fX/xuTo2v7rVtv+v/rX7+cTJ58V3LHHbMq2cCB51U+16yz80dN
Y+sF/Y8Hbf2n/q/vHkz937pi2+71f/3675m3ofV/euJZP+lN/2+91Z7rsGcM
7qpoox3n3pX8679e3jS2XtD/eNDWf6+R//cY+f/qRv7fF9t2zv+b7976DB6z
2IUE/Y8Hbf235489dU5D67+tD1f/HhFe/7/lvI+E1n+Pf6H13xfb8Prvi214
/ffVdg6r/1OSo3sEWrfw+u+t243+Qzm09Z/8v+c+QP6f/H+Rkf8Pl//3679n
7NB/KI+2/lP/13MfoP4v9X+LrJ3r//r1f75r7MPrv2fs0H8oj7b+e438v+8+
Qv6/qpH/98WW/H91Q/+hLNr6z/q/717A+n9dsWX9n/X/esYO/YfyaOu/rb9e
5jg/tP7fkBytud66hdf/4c77SGj99/gXWv99sQ2v/77Yhtd/z7wNrf+3JUdr
Jbdu4fXfM3boP5RHW/+9xvq/7z7C+n9VY/3fF1vW/6sb+g9l0dZ/+3sldzjO
D63/Nser1xENr//V9zgdvo+E1n+Pf6H13xfb8Prvi214/ffM29D6Pzs5+reG
Wrfw+u8ZO/QfyqOt/+T/PfcB8v/k/4uM/D/5/6qg//Ggrf/U//XcB6j/S/3f
IqP+b7j6v37994wd+g/l0dZ/r5H/991HyP9XNfL/vtiS/69u6D+URVv/qf/r
uxdQ/7eu2FL/l/q/9Ywd+g/l0dZ/8v+e+wD5f/L/RUb+n/x/VdD/eNDW/weT
w3VYq54fWv+tPsF9lc8Pr//Vn18/fB8Jrf8e/0Lrvy+24fXfF9vw+u+Zt6H1
f0Fm1c4Pr/+esUP/oTza+u818v+++wj5/6pG/t8XW/L/1Q39h7Jo6z/r/757
Aev/dcWW9X/W/+sZO/QfyqOt/7YGO9Jxfmj9t306UyufH17/L3XeR0Lrv8e/
0Prvi214/ffFNrz+e+ZtaP3/XuL53S68/nvGDv2H8mjrv9dY//fdR1j/r2qs
//tiy/p/dUP/oSza+k/9X9+9gPq/dcWW+r/U/61n7NB/KI+2/pP/99wHyP+T
/y8y8v/k/6uC/seDtv7b/qvbHeeH1v9pDZtZ+fzw+u87P7z+e/wLrf++2IbX
f19sw+u/Z96G1v87M6t2fnj994wd+g/l0dZ/r5H/991HyP9XNfL/vtiS/69u
6D+URVv/qf/ruxdQ/7eu2FL/l/q/9Ywd+g/l0dZ/8v+e+wD5f/L/RUb+n/x/
VdD/eNDWf+r/eu4D1P+l/m+RUf+X+r9VQf/jQV//Ox3nh9Z/25/4QOXzw+t/
9Xvc4ftIaP33+Bda/32xDa//vtiG13/PvA2t//dnVu388PrvGTv0H8qjrf+s
/3vuA6z/s/5fZKz/s/5fFfQ/HrT1n/q/nvsA9X+p/1tk1P+l/m9V0P940NZ/
r7H/z3cfYf9fVWP/ny+27P+rbug/lEVb/y1HN8lxfmj9txoicyqfH17/q3/H
OXwfCa3/Hv9C678vtuH13xfb8Prvmbeh9f/uxKPP4fXfM3boP5RHW//J/3vu
A+T/yf8XGfl/8v9VQf/jQVv/qf/ruQ9Q/5f6v0VG/V/q/1YF/Y8Hbf33Gvl/
332E/H9VI//viy35/+qG/kNZtPV/XsNGOM4Prf/fTrTX/4c67yOh9d/jX2j9
98U2vP77Yhte/z3ztr+v/3vGDv2Hw3R0dByxIrT139Zf/9lxfmj9P69hV1U+
P7z+f8p5Hwmt/x7/Quu/L7bh9d8X2/D675m3ofX/osyqnR9e/z1jh/7DYe1v
1s7R1n/7/v91x/mh9f+aht1a+fzw+v9V530ktP57/Aut/77Yhtd/X2zD679n
3obW/+szq3Z+eP33jB36DzHpv2edM7T+X5t4ntUJr/8DnfeR0Prv8S+0/vti
G17/fbENr/++3E5Y/b8hs2rnh9d/b94O/e/vxKH/rP977gOs/7P+X2Ss/7P+
XxX0X5+y+n/bbbclI0aMCGaf+9yXkrPOOq+SnXHGgOSkk/5P5fPPPHNg8rWv
nVfo29ChQ5PTTz+78ud/6lOnJqeccqbDv68kw4cPL/Tvy18eUPmzzU488ROu
87/wha80je3nP//l2vz73OcGNe5z5xb6NmzYsMb4nlNbbM844yvJhRdeWOjf
2WcPaIzf12qL7VlnfblpbL/wherzwswzby22AwYMahrb00//SuXP//SnP5ta
1fPt3zYfivwz3+1nqGPszCx2Ie/pEydOPB4SBg7K6v/+/fuTt99+G8MwDMN6
tQMHDhwPCQMHZfUfAAAA4qLM/j8AAAAAAAAAAAAAAIDjiXLeQjm3ouxbV1T9
6zp+aj6q+mV0Hzd1H9VQ9g3geKI8D5SfrVT2rSvtFF8V2iW2OWr+KY+fsm8A
ddAuc0DZT0Xfcp8UfTPwy4+ir8oaq+wbQB20yxxQ9LMdvl8r+6c4fupr6znq
vimOH/oPcCzqc0DxPtIdNf+6+qPmW08o+dguGtEufqn52S6/3wEcD5TngLJv
XVHzsx2eEeuKkn/q+mUo+pTTDuOXo+wbwPFAdQ6o+mVwj/OhPH7KvuUo+pSj
PH7KvgHUgeocUP8Oq+pXd1T9Ux4/Zd8MVb9ylMdP2TcAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgL6G2msAAAD9D/QfAACg/9Fuf58Y
AAAA/OSaj/YDAAD0H/j7awAAAP0Pvv8DAAD0P8j/AwAA9D/QfwAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDe+f+C
0dwn
"], {{0, 384}, {512, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
BaseStyle->"ImageGraphics",
ImageSizeRaw->{512, 384},
PlotRange->{{0, 512}, {0, 384}}]], "Output",
CellChangeTimes->{3.609683841530814*^9, 3.609688885886676*^9,
3.609697564152542*^9, 3.6097694391454268`*^9}]
}, Open ]],
Cell["\<\
Here is the theoretical histogram of Benfold\[CloseCurlyQuote]s law.\
\>", "Text",
CellChangeTimes->{{3.609683983244646*^9, 3.609684004308592*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"benList", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"N", "@",
RowBox[{"Log10", "[",
RowBox[{"1", "+",
RowBox[{"1", "/", "d"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"d", ",", "1", ",", "9"}], "}"}]}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.609684063353105*^9, 3.609684090160344*^9}, {
3.609684123973208*^9, 3.609684127939413*^9}, {3.6096841765486393`*^9,
3.609684180193323*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"barBen", "=",
RowBox[{"BarChart", "[",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"benList", ",", "Green"}], "]"}], ",",
RowBox[{"ChartBaseStyle", "\[Rule]",
RowBox[{"Opacity", "[", "0.5", "]"}]}], ",",
RowBox[{"ChartStyle", "\[Rule]",
RowBox[{"EdgeForm", "[", "None", "]"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.6096840565844603`*^9, 3.609684059985656*^9}, {
3.609684130625342*^9, 3.609684143613985*^9}, {3.609684183729301*^9,
3.609684196848896*^9}, {3.60968479673027*^9, 3.6096849030471373`*^9}}],
Cell[BoxData[
GraphicsBox[{{
{Opacity[0], PointBox[{{0.44545454545454544`, 0.}}]}, {{},
{RGBColor[0.798413061722744, 0.824719615472648, 0.968322270542458],
Opacity[0.5], EdgeForm[{Opacity[0.7], Thickness[Small]}],
{RGBColor[0, 1, 0], Opacity[0.5], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{0.5454545454545454, 0.}, {1.4545454545454546`,
0.30102999566398114`}, "RoundingRadius" -> 0]},
ImageSizeCache->{{24.675199242159024`,
58.086101443604704`}, {-105.63682677148036`, 98.99548819746441}}],
StatusArea[#, 0.30102999566398114`]& ,
TagBoxNote->"0.30102999566398114"],
StyleBox["0.30102999566398114`", {
GrayLevel[0]}, StripOnInput -> False]],
Annotation[#,
Style[0.30102999566398114`, {
GrayLevel[0]}], "Tooltip"]& ]},
{RGBColor[0, 1, 0], Opacity[0.5], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{1.5454545454545454`, 0.}, {2.4545454545454546`,
0.1760912590556812}, "RoundingRadius" -> 0]},
ImageSizeCache->{{61.427191663749255`,
94.83809386519494}, {-20.706742495128807`, 98.99548819746441}}],
StatusArea[#, 0.1760912590556812]& ,
TagBoxNote->"0.1760912590556812"],
StyleBox["0.1760912590556812`", {
GrayLevel[0]}, StripOnInput -> False]],
Annotation[#,
Style[0.1760912590556812, {
GrayLevel[0]}], "Tooltip"]& ]},
{RGBColor[0, 1, 0], Opacity[0.5], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{2.5454545454545454`, 0.}, {3.4545454545454546`,
0.1249387366082999}, "RoundingRadius" -> 0]},
ImageSizeCache->{{98.1791840853395, 131.59008628678518`}, {
14.065403921112875`, 98.99548819746441}}],
StatusArea[#, 0.1249387366082999]& ,
TagBoxNote->"0.1249387366082999"],
StyleBox["0.1249387366082999`", {
GrayLevel[0]}, StripOnInput -> False]],
Annotation[#,
Style[0.1249387366082999, {
GrayLevel[0]}], "Tooltip"]& ]},
{RGBColor[0, 1, 0], Opacity[0.5], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{3.5454545454545454`, 0.}, {4.454545454545454,
0.0969100130080564}, "RoundingRadius" -> 0]},
ImageSizeCache->{{134.93117650692975`, 168.3420787083754}, {
33.11859688712133, 98.99548819746441}}],
StatusArea[#, 0.0969100130080564]& ,
TagBoxNote->"0.0969100130080564"],
StyleBox["0.0969100130080564`", {
GrayLevel[0]}, StripOnInput -> False]],
Annotation[#,
Style[0.0969100130080564, {
GrayLevel[0]}], "Tooltip"]& ]},
{RGBColor[0, 1, 0], Opacity[0.5], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{4.545454545454545, 0.}, {5.454545454545454,
0.0791812460476248}, "RoundingRadius" -> 0]},
ImageSizeCache->{{171.68316892851996`, 205.09407112996564`}, {
45.170148815214276`, 98.99548819746441}}],
StatusArea[#, 0.0791812460476248]& ,
TagBoxNote->"0.0791812460476248"],
StyleBox["0.0791812460476248`", {
GrayLevel[0]}, StripOnInput -> False]],
Annotation[#,
Style[0.0791812460476248, {
GrayLevel[0]}], "Tooltip"]& ]},
{RGBColor[0, 1, 0], Opacity[0.5], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{5.545454545454545, 0.}, {6.454545454545454,
0.06694678963061321}, "RoundingRadius" -> 0]},
ImageSizeCache->{{208.4351613501102, 241.84606355155586`}, {
53.48681218783811, 98.99548819746441}}],
StatusArea[#, 0.06694678963061321]& ,
TagBoxNote->"0.06694678963061321"],
StyleBox["0.06694678963061321`", {
GrayLevel[0]}, StripOnInput -> False]],
Annotation[#,
Style[0.06694678963061321, {
GrayLevel[0]}], "Tooltip"]& ]},
{RGBColor[0, 1, 0], Opacity[0.5], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{6.545454545454545, 0.}, {7.454545454545454,
0.057991946977686726`}, "RoundingRadius" -> 0]},
ImageSizeCache->{{245.18715377170042`, 278.59805597314613`}, {
59.57407993073915, 98.99548819746441}}],
StatusArea[#, 0.057991946977686726`]& ,
TagBoxNote->"0.057991946977686726"],
StyleBox["0.057991946977686726`", {
GrayLevel[0]}, StripOnInput -> False]],
Annotation[#,
Style[0.057991946977686726`, {
GrayLevel[0]}], "Tooltip"]& ]},
{RGBColor[0, 1, 0], Opacity[0.5], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{7.545454545454545, 0.}, {8.454545454545453,
0.051152522447381284`}, "RoundingRadius" -> 0]},
ImageSizeCache->{{281.9391461932907, 315.3500483947363}, {
64.22334178122276, 98.99548819746441}}],
StatusArea[#, 0.051152522447381284`]& ,
TagBoxNote->"0.051152522447381284"],
StyleBox["0.051152522447381284`", {
GrayLevel[0]}, StripOnInput -> False]],
Annotation[#,
Style[0.051152522447381284`, {
GrayLevel[0]}], "Tooltip"]& ]},
{RGBColor[0, 1, 0], Opacity[0.5], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{8.545454545454545, 0.}, {9.454545454545453,
0.04575749056067514}, "RoundingRadius" -> 0]},
ImageSizeCache->{{318.6911386148809, 352.10204081632656`}, {
67.89074330336298, 98.99548819746441}}],
StatusArea[#, 0.04575749056067514]& ,
TagBoxNote->"0.04575749056067514"],
StyleBox["0.04575749056067514`", {
GrayLevel[0]}, StripOnInput -> False]],
Annotation[#,
Style[0.04575749056067514, {
GrayLevel[0]}], "Tooltip"]& ]}}, {}, {}}, {}, {},
GraphicsGroupBox[
{GrayLevel[0],
StyleBox[
StyleBox[
StyleBox[{
{Thickness[Tiny],
LineBox[{{0.44545454545454544`, 0.}, {9.454545454545451,
0.}}], {}}, {
{Thickness[Tiny],
LineBox[{{0.5454545454545454, 0.},
Offset[{-1.102182119232618*^-15, -6.}, {0.5454545454545454,
0.}]}],
LineBox[{{9.454545454545451, 0.},
Offset[{-1.102182119232618*^-15, -6.}, {9.454545454545451,
0.}]}], {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {}}},
Antialiasing->False], "GraphicsAxes",
StripOnInput->False],
Antialiasing->False]}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, True},
AxesLabel->{None, None},
AxesOrigin->{0.44545454545454544`, 0},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
PlotRangePadding->Scaled[0.02],
Ticks->{None, Automatic}]], "Output",
CellChangeTimes->{{3.609684132108004*^9, 3.609684144203024*^9}, {
3.609684187249955*^9, 3.6096841972348127`*^9}, 3.6096848086110373`*^9, {
3.609684860789867*^9, 3.60968490351994*^9}, 3.6096888873616457`*^9,
3.609697564551228*^9, 3.609769440859363*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Benford\[CloseCurlyQuote]s Law of Exoplents", "Subsection",
CellChangeTimes->{{3.6096837259781446`*^9, 3.60968374672851*^9}, {
3.60970077644569*^9, 3.6097007765785513`*^9}}],
Cell["\<\
Here we are going to test Benfold\[CloseCurlyQuote]s Law on Exoplanets.\
\>", "Text",
CellChangeTimes->{{3.6096837591859827`*^9, 3.6096837785385923`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"name", " ", "=", " ",
RowBox[{"AstronomicalData", "[", "\"\<Exoplanet\>\"", "]"}]}],
";"}]], "Input"],
Cell[CellGroupData[{
Cell["Mass Data", "Subsubsection",
CellChangeTimes->{{3.609683752546021*^9, 3.609683755088698*^9}, {
3.6096838837626123`*^9, 3.609683884599534*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"massRaw", " ", "=", " ",
RowBox[{"AstronomicalData", "[",
RowBox[{"\"\<Exoplanet\>\"", ",", "\"\<Mass\>\""}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"mass", " ", "=", " ",
RowBox[{"Delete", "[",
RowBox[{"massRaw", ",",
RowBox[{"Position", "[",
RowBox[{"massRaw", ",",
RowBox[{"Missing", "[", "\"\<NotAvailable\>\"", "]"}]}], "]"}]}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"lenM", "=",
RowBox[{"Length", "@", "mass"}]}]}], "Input",
CellChangeTimes->{{3.609682659720891*^9, 3.609682685246756*^9}, {
3.609682762627922*^9, 3.609682823500206*^9}, {3.609682950494576*^9,
3.6096829863116198`*^9}, {3.6096830525029078`*^9, 3.609683078944139*^9}, {
3.609683158491037*^9, 3.60968316018567*^9}, 3.6096832677029877`*^9, {
3.609683299441368*^9, 3.609683305945528*^9}, 3.6096836155400553`*^9, {
3.609683886776928*^9, 3.609683903920547*^9}, 3.609684283898699*^9, {
3.6096843412817593`*^9, 3.609684385062606*^9}, {3.609684419586306*^9,
3.609684436297608*^9}}],
Cell[BoxData["545"], "Output",
CellChangeTimes->{
3.609682714582337*^9, {3.609682773149001*^9, 3.609682788296846*^9},
3.6096828242452602`*^9, {3.609682951466269*^9, 3.609682965149111*^9}, {
3.6096830716563807`*^9, 3.609683079288183*^9}, 3.609683161155067*^9,
3.609683268105323*^9, 3.609683306691062*^9, 3.609683615980648*^9,
3.6096839311614017`*^9, 3.60968428428905*^9, {3.609684379012815*^9,
3.609684385429606*^9}, {3.609684429228693*^9, 3.609684436975174*^9},
3.6096889105615664`*^9, 3.6096975647309723`*^9, 3.609769463698897*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"sortM", "=",
RowBox[{"Sort", "@",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"RealDigits", "[", "mass", "]"}], "[",
RowBox[{"[",
RowBox[{"i", ",", "1", ",", "1"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "lenM"}], "}"}]}], "]"}]}]}],
";"}]], "Input",
CellChangeTimes->{{3.6096830897221117`*^9, 3.609683092904456*^9}, {
3.609683128327703*^9, 3.6096831314789553`*^9}, {3.6096831656026087`*^9,
3.609683191941053*^9}, {3.609683252814311*^9, 3.6096833767111273`*^9}, {
3.6096835484027967`*^9, 3.609683618882831*^9}, {3.609683898882195*^9,
3.609683927768642*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"tallyM", "=",
RowBox[{"Tally", "@", "sortM"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"barListM", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"N", "[",
RowBox[{
RowBox[{"tallyM", "[",
RowBox[{"[",
RowBox[{"i", ",", "2"}], "]"}], "]"}], "/", "lenM"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "@", "tallyM"}]}], "}"}]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.6096844688125057`*^9, 3.6096844775601254`*^9}, {
3.6096845261212893`*^9, 3.609684585599749*^9}, 3.6096847003059483`*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"0.3119266055045872`", ",", "0.1669724770642202`", ",",
"0.15045871559633028`", ",", "0.11009174311926606`", ",",
"0.07155963302752294`", ",", "0.06422018348623854`", ",",
"0.047706422018348627`", ",", "0.03302752293577982`", ",",
"0.044036697247706424`"}], "}"}]], "Output",
CellChangeTimes->{
3.609684478805211*^9, {3.609684569940658*^9, 3.6096845861009007`*^9},
3.609684701096691*^9, 3.609688913087167*^9, 3.6096975670582848`*^9,
3.60976946597051*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"barM", "=",
RowBox[{"BarChart", "[",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"barListM", ",", "Orange"}], "]"}], ",",
RowBox[{"ChartBaseStyle", "\[Rule]",
RowBox[{"Opacity", "[", "0.3", "]"}]}], ",",
RowBox[{"ChartStyle", "\[Rule]",
RowBox[{"EdgeForm", "[", "None", "]"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.6096835805953417`*^9, 3.609683601824271*^9}, {
3.609683922193578*^9, 3.6096839228640947`*^9}, {3.609684245714209*^9,
3.609684249080645*^9}, {3.60968449163657*^9, 3.609684501651081*^9}, {
3.609684594192009*^9, 3.609684604430297*^9}, {3.609684683114581*^9,
3.609684735299033*^9}, {3.60968491498827*^9, 3.609685024628049*^9}}],
Cell[BoxData[
GraphicsBox[{{
{Opacity[0], PointBox[{{0.44545454545454544`, 0.}}]}, {{},
{RGBColor[0.798413061722744, 0.824719615472648, 0.968322270542458],
Opacity[0.3], EdgeForm[{Opacity[0.7], Thickness[Small]}],
{RGBColor[1, 0.5, 0], Opacity[0.3], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{0.5454545454545454, 0.}, {1.4545454545454546`,
0.3119266055045872}, "RoundingRadius" -> 0]},
ImageSizeCache->{{24.675199242159024`,
58.086101443604704`}, {-105.6368267714803, 98.99548819746447}}],
StatusArea[#, 0.3119266055045872]& ,
TagBoxNote->"0.3119266055045872"],
StyleBox["0.3119266055045872`", {
GrayLevel[0]}, StripOnInput -> False]],
Annotation[#,
Style[0.3119266055045872, {
GrayLevel[0]}], "Tooltip"]& ]},
{RGBColor[1, 0.5, 0], Opacity[0.3], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{1.5454545454545454`, 0.}, {2.4545454545454546`,
0.1669724770642202}, "RoundingRadius" -> 0]},
ImageSizeCache->{{61.427191663749255`,
94.83809386519494}, {-10.542986285911851`, 98.99548819746447}}],
StatusArea[#, 0.1669724770642202]& ,
TagBoxNote->"0.1669724770642202"],
StyleBox["0.1669724770642202`", {
GrayLevel[0]}, StripOnInput -> False]],
Annotation[#,
Style[0.1669724770642202, {
GrayLevel[0]}], "Tooltip"]& ]},
{RGBColor[1, 0.5, 0], Opacity[0.3], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{2.5454545454545454`, 0.}, {3.4545454545454546`,
0.15045871559633028`}, "RoundingRadius" -> 0]},
ImageSizeCache->{{98.1791840853395, 131.59008628678518`}, {
0.2904892124440437, 98.99548819746447}}],
StatusArea[#, 0.15045871559633028`]& ,
TagBoxNote->"0.15045871559633028"],
StyleBox["0.15045871559633028`", {
GrayLevel[0]}, StripOnInput -> False]],
Annotation[#,
Style[0.15045871559633028`, {
GrayLevel[0]}], "Tooltip"]& ]},
{RGBColor[1, 0.5, 0], Opacity[0.3], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{3.5454545454545454`, 0.}, {4.454545454545454,
0.11009174311926606`}, "RoundingRadius" -> 0]},
ImageSizeCache->{{134.93117650692975`, 168.3420787083754}, {
26.772318208425133`, 98.99548819746447}}],
StatusArea[#, 0.11009174311926606`]& ,
TagBoxNote->"0.11009174311926606"],
StyleBox["0.11009174311926606`", {
GrayLevel[0]}, StripOnInput -> False]],
Annotation[#,
Style[0.11009174311926606`, {
GrayLevel[0]}], "Tooltip"]& ]},
{RGBColor[1, 0.5, 0], Opacity[0.3], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{4.545454545454545, 0.}, {5.454545454545454,
0.07155963302752294}, "RoundingRadius" -> 0]},
ImageSizeCache->{{171.68316892851996`, 205.09407112996564`}, {
52.0504277045889, 98.99548819746447}}],
StatusArea[#, 0.07155963302752294]& ,
TagBoxNote->"0.07155963302752294"],
StyleBox["0.07155963302752294`", {
GrayLevel[0]}, StripOnInput -> False]],
Annotation[#,
Style[0.07155963302752294, {
GrayLevel[0]}], "Tooltip"]& ]},
{RGBColor[1, 0.5, 0], Opacity[0.3], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{5.545454545454545, 0.}, {6.454545454545454,
0.06422018348623854}, "RoundingRadius" -> 0]},
ImageSizeCache->{{208.4351613501102, 241.84606355155586`}, {
56.86530570385819, 98.99548819746447}}],
StatusArea[#, 0.06422018348623854]& ,
TagBoxNote->"0.06422018348623854"],
StyleBox["0.06422018348623854`", {
GrayLevel[0]}, StripOnInput -> False]],
Annotation[#,
Style[0.06422018348623854, {
GrayLevel[0]}], "Tooltip"]& ]},
{RGBColor[1, 0.5, 0], Opacity[0.3], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{6.545454545454545, 0.}, {7.454545454545454,
0.047706422018348627`}, "RoundingRadius" -> 0]},
ImageSizeCache->{{245.18715377170042`, 278.59805597314613`}, {
67.6987812022141, 98.99548819746447}}],
StatusArea[#, 0.047706422018348627`]& ,
TagBoxNote->"0.047706422018348627"],
StyleBox["0.047706422018348627`", {
GrayLevel[0]}, StripOnInput -> False]],
Annotation[#,
Style[0.047706422018348627`, {
GrayLevel[0]}], "Tooltip"]& ]},
{RGBColor[1, 0.5, 0], Opacity[0.3], EdgeForm[None],
TagBox[
TooltipBox[
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{7.545454545454545, 0.}, {8.454545454545453,
0.03302752293577982}, "RoundingRadius" -> 0]},