-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_dataset_mimic_cxr.py
229 lines (200 loc) · 8.09 KB
/
get_dataset_mimic_cxr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import torch
from PIL import Image
import random
import os
import pandas as pd
from pathlib import Path
from PIL import ImageFile
import numpy as np
ImageFile.LOAD_TRUNCATED_IMAGES = True
class MimicCXRDataset(torch.utils.data.Dataset):
"""Mimic CXR dataset."""
def __init__(
self,
images_dir,
tokenizer=None,
csv_file: Path = None,
transform=None,
seed=42,
classifier_guidance_dropout=0.1,
dataset_size_ratio=None,
use_real_images: bool = True,
use_findings: bool = False,
use_random_word_addition=False,
):
"""
Args:
csv_file (string): Path to the csv file with annotations.
images_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on an image.
"""
self.images_dir = images_dir
self.transform = transform
self.tokenizer = tokenizer
self.classifier_guidance_dropout = classifier_guidance_dropout
self.use_findings = use_findings
self.use_random_word_addition = use_random_word_addition
random.seed(seed)
if isinstance(csv_file, pd.DataFrame):
# We can either pass the dataframe directly
self.annotations_text_image_path = csv_file
else:
# Or pass the path to the dataframe
try:
self.annotations_text_image_path = pd.read_excel(csv_file)
except:
self.annotations_text_image_path = pd.read_csv(csv_file)
if not use_real_images:
self.img_path_key = "synth_img_path"
self.annotations_text_image_path = get_synthetic_df(
self.annotations_text_image_path, images_dir
)
else:
self.img_path_key = "path"
if dataset_size_ratio is not None:
original_dataset_size = len(self.annotations_text_image_path)
dataset_size = int(
len(self.annotations_text_image_path) * dataset_size_ratio
)
subset_rows = random.sample(range(original_dataset_size), k=dataset_size)
# subset_rows = random.sample(range(dataset_size), k=dataset_size)
# self.annotations_text_image_path = self.annotations_text_image_path.iloc[:dataset_size]
self.annotations_text_image_path = self.annotations_text_image_path.iloc[
subset_rows
]
if self.use_findings:
assert all(
[
isinstance(text, str)
for text in self.annotations_text_image_path["findings"].to_list()
]
), "All text must be strings"
else:
assert all(
[
isinstance(text, str)
for text in self.annotations_text_image_path["text"].to_list()
]
), "All text must be strings"
if self.tokenizer is not None:
if self.use_findings:
# RWA
if self.use_random_word_addition:
# Apply RWA to all the captions in the dataset
self.annotations_text_image_path["findings"] = (
self.annotations_text_image_path["findings"].apply(
lambda x: prompt_augmentation(x, tokenizer=self.tokenizer)
)
)
self.tokens = self.tokenizer(
self.annotations_text_image_path["findings"].to_list(),
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
)
else:
if self.use_random_word_addition:
# Apply RWA to all the captions in the dataset
self.annotations_text_image_path["text"] = (
self.annotations_text_image_path["text"].apply(
lambda x: prompt_augmentation(x, tokenizer=self.tokenizer)
)
)
self.tokens = self.tokenizer(
self.annotations_text_image_path["text"].to_list(),
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
)
self.uncond_tokens = self.tokenizer(
"",
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
)
def __len__(self):
return len(self.annotations_text_image_path)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_path = (
self.images_dir
/ self.annotations_text_image_path[self.img_path_key].iloc[idx]
)
try:
im = Image.open(img_path).convert("RGB")
except:
print("ERROR IN LOADING THE IMAGE {}".format(img_path))
if self.transform:
im = self.transform(im)
if self.use_findings:
text = self.annotations_text_image_path["findings"].iloc[idx]
if self.use_random_word_addition:
text = prompt_augmentation(text, tokenizer=self.tokenizer)
else:
text = self.annotations_text_image_path["text"].iloc[idx]
if self.use_random_word_addition:
text = prompt_augmentation(text, tokenizer=self.tokenizer)
sample = {
"image": im,
"text": text,
}
if self.tokenizer is not None:
if random.randint(0, 100) / 100 < self.classifier_guidance_dropout:
input_ids, attention_mask = torch.LongTensor(
self.uncond_tokens.input_ids
), torch.LongTensor(self.uncond_tokens.attention_mask)
else:
input_ids, attention_mask = torch.LongTensor(
self.tokens.input_ids[idx]
), torch.LongTensor(self.tokens.attention_mask[idx])
sample["input_ids"] = input_ids
sample["attention_mask"] = attention_mask
return sample
def get_synthetic_df(
df: pd.DataFrame, synthetic_images_path: Path, chexpert_labels_path: Path = None
):
if "img_name" not in df.columns:
df["img_name"] = df["path"].map(lambda x: x[x.rfind("/") + 1 : x.rfind(".")])
if "synth_img_path" not in df.columns:
imgs_path_list = [str(i.name) for i in synthetic_images_path.glob("*")]
df_synth = pd.DataFrame(columns=["synth_img_path"], data=imgs_path_list)
df_synth["img_name"] = df_synth["synth_img_path"].map(
lambda x: x[: x.find("_")]
)
df = pd.merge(df_synth, df, how="left", on="img_name")
if chexpert_labels_path is not None:
df_chexpert = pd.read_csv(chexpert_labels_path)
df = pd.merge(
df,
df_chexpert.rename(columns={"study_id": "study"}),
how="left",
on=["subject_id", "study"],
)
return df
def insert_rand_word(sentence, word):
sent_list = sentence.split(" ")
sent_list.insert(random.randint(0, len(sent_list)), word)
new_sent = " ".join(sent_list)
return new_sent
def prompt_augmentation(
prompt, aug_style="rand_word_add", tokenizer=None, repeat_num=4
):
if aug_style == "rand_numb_add":
for i in range(repeat_num):
randnum = np.random.choice(100000)
prompt = insert_rand_word(prompt, str(randnum))
elif aug_style == "rand_word_add":
for i in range(repeat_num):
rand_int = list(np.random.randint(49400, size=1))
randword = tokenizer.decode(rand_int)
prompt = insert_rand_word(prompt, randword)
elif aug_style == "rand_word_repeat":
wordlist = prompt.split(" ")
for i in range(repeat_num):
randword = np.random.choice(wordlist)
prompt = insert_rand_word(prompt, randword)
else:
raise Exception("This style of prompt augmnentation is not written")
return prompt