-
Notifications
You must be signed in to change notification settings - Fork 4.7k
/
slots.py
454 lines (378 loc) · 16 KB
/
slots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
import logging
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Text, Type
import rasa.shared.core.constants
from rasa.shared.exceptions import RasaException
import rasa.shared.utils.common
import rasa.shared.utils.io
from rasa.shared.constants import DOCS_URL_SLOTS
logger = logging.getLogger(__name__)
class InvalidSlotTypeException(RasaException):
"""Raised if a slot type is invalid."""
class InvalidSlotConfigError(RasaException, ValueError):
"""Raised if a slot's config is invalid."""
class Slot(ABC):
"""Key-value store for storing information during a conversation."""
@property
@abstractmethod
def type_name(self) -> Text:
"""Name of the type of slot."""
...
def __init__(
self,
name: Text,
mappings: List[Dict[Text, Any]],
initial_value: Any = None,
value_reset_delay: Optional[int] = None,
influence_conversation: bool = True,
) -> None:
"""Create a Slot.
Args:
name: The name of the slot.
initial_value: The initial value of the slot.
mappings: List containing slot mappings.
value_reset_delay: After how many turns the slot should be reset to the
initial_value. This is behavior is currently not implemented.
influence_conversation: If `True` the slot will be featurized and hence
influence the predictions of the dialogue polices.
"""
self.name = name
self.mappings = mappings
self._value = initial_value
self.initial_value = initial_value
self._value_reset_delay = value_reset_delay
self.influence_conversation = influence_conversation
self._has_been_set = False
def feature_dimensionality(self) -> int:
"""How many features this single slot creates.
Returns:
The number of features. `0` if the slot is unfeaturized. The dimensionality
of the array returned by `as_feature` needs to correspond to this value.
"""
if not self.influence_conversation:
return 0
return self._feature_dimensionality()
def _feature_dimensionality(self) -> int:
"""See the docstring for `feature_dimensionality`."""
return 1
def has_features(self) -> bool:
"""Indicate if the slot creates any features."""
return self.feature_dimensionality() != 0
def value_reset_delay(self) -> Optional[int]:
"""After how many turns the slot should be reset to the initial_value.
If the delay is set to `None`, the slot will keep its value forever.
"""
# TODO: FUTURE this needs to be implemented - slots are not reset yet
return self._value_reset_delay
def as_feature(self) -> List[float]:
if not self.influence_conversation:
return []
return self._as_feature()
@abstractmethod
def _as_feature(self) -> List[float]:
raise NotImplementedError(
"Each slot type needs to specify how its "
"value can be converted to a feature. Slot "
"'{}' is a generic slot that can not be used "
"for predictions. Make sure you add this "
"slot to your domain definition, specifying "
"the type of the slot. If you implemented "
"a custom slot type class, make sure to "
"implement `.as_feature()`."
"".format(self.name)
)
def reset(self) -> None:
"""Resets the slot's value to the initial value."""
self.value = self.initial_value
self._has_been_set = False
@property
def value(self) -> Any:
"""Gets the slot's value."""
return self._value
@value.setter
def value(self, value: Any) -> None:
"""Sets the slot's value."""
self._value = value
self._has_been_set = True
@property
def has_been_set(self) -> bool:
"""Indicates if the slot's value has been set."""
return self._has_been_set
def __str__(self) -> Text:
return f"{self.__class__.__name__}({self.name}: {self.value})"
def __repr__(self) -> Text:
return f"<{self.__class__.__name__}({self.name}: {self.value})>"
@staticmethod
def resolve_by_type(type_name: Text) -> Type["Slot"]:
"""Returns a slots class by its type name."""
for cls in rasa.shared.utils.common.all_subclasses(Slot):
if cls.type_name == type_name:
return cls
try:
return rasa.shared.utils.common.class_from_module_path(type_name)
except (ImportError, AttributeError):
raise InvalidSlotTypeException(
f"Failed to find slot type, '{type_name}' is neither a known type nor "
f"user-defined. If you are creating your own slot type, make "
f"sure its module path is correct. "
f"You can find all build in types at {DOCS_URL_SLOTS}"
)
def persistence_info(self) -> Dict[str, Any]:
"""Returns relevant information to persist this slot."""
return {
"type": rasa.shared.utils.common.module_path_from_instance(self),
"initial_value": self.initial_value,
"influence_conversation": self.influence_conversation,
"mappings": self.mappings,
}
def fingerprint(self) -> Text:
"""Returns a unique hash for the slot which is stable across python runs.
Returns:
fingerprint of the slot
"""
data = {"slot_name": self.name, "slot_value": self.value}
data.update(self.persistence_info())
return rasa.shared.utils.io.get_dictionary_fingerprint(data)
class FloatSlot(Slot):
"""A slot storing a float value."""
type_name = "float"
def __init__(
self,
name: Text,
mappings: List[Dict[Text, Any]],
initial_value: Optional[float] = None,
value_reset_delay: Optional[int] = None,
max_value: float = 1.0,
min_value: float = 0.0,
influence_conversation: bool = True,
) -> None:
"""Creates a FloatSlot.
Raises:
InvalidSlotConfigError, if the min-max range is invalid.
UserWarning, if initial_value is outside the min-max range.
"""
super().__init__(
name, mappings, initial_value, value_reset_delay, influence_conversation
)
self.max_value = max_value
self.min_value = min_value
if min_value >= max_value:
raise InvalidSlotConfigError(
"Float slot ('{}') created with an invalid range "
"using min ({}) and max ({}) values. Make sure "
"min is smaller than max."
"".format(self.name, self.min_value, self.max_value)
)
if initial_value is not None and not (min_value <= initial_value <= max_value):
rasa.shared.utils.io.raise_warning(
f"Float slot ('{self.name}') created with an initial value "
f"{self.value}. This value is outside of the configured min "
f"({self.min_value}) and max ({self.max_value}) values."
)
def _as_feature(self) -> List[float]:
try:
capped_value = max(self.min_value, min(self.max_value, float(self.value)))
if abs(self.max_value - self.min_value) > 0:
covered_range = abs(self.max_value - self.min_value)
else:
covered_range = 1
return [1.0, (capped_value - self.min_value) / covered_range]
except (TypeError, ValueError):
return [0.0, 0.0]
def persistence_info(self) -> Dict[Text, Any]:
"""Returns relevant information to persist this slot."""
d = super().persistence_info()
d["max_value"] = self.max_value
d["min_value"] = self.min_value
return d
def _feature_dimensionality(self) -> int:
return len(self.as_feature())
class BooleanSlot(Slot):
"""A slot storing a truth value."""
type_name = "bool"
def _as_feature(self) -> List[float]:
try:
if self.value is not None:
return [1.0, float(bool_from_any(self.value))]
else:
return [0.0, 0.0]
except (TypeError, ValueError):
# we couldn't convert the value to float - using default value
return [0.0, 0.0]
def _feature_dimensionality(self) -> int:
return len(self.as_feature())
def bool_from_any(x: Any) -> bool:
"""Converts bool/float/int/str to bool or raises error."""
if isinstance(x, bool):
return x
elif isinstance(x, (float, int)):
return x == 1.0
elif isinstance(x, str):
if x.isnumeric():
return float(x) == 1.0
elif x.strip().lower() == "true":
return True
elif x.strip().lower() == "false":
return False
else:
raise ValueError("Cannot convert string to bool")
else:
raise TypeError("Cannot convert to bool")
class TextSlot(Slot):
type_name = "text"
def _as_feature(self) -> List[float]:
return [1.0 if self.value is not None else 0.0]
class ListSlot(Slot):
type_name = "list"
def _as_feature(self) -> List[float]:
try:
if self.value is not None and len(self.value) > 0:
return [1.0]
else:
return [0.0]
except (TypeError, ValueError):
# we couldn't convert the value to a list - using default value
return [0.0]
# FIXME: https://github.com/python/mypy/issues/8085
@Slot.value.setter # type: ignore[attr-defined,misc]
def value(self, value: Any) -> None:
"""Sets the slot's value."""
if value and not isinstance(value, list):
# Make sure we always store list items
value = [value]
# Call property setter of superclass
# FIXME: https://github.com/python/mypy/issues/8085
super(ListSlot, self.__class__).value.fset(self, value) # type: ignore[attr-defined] # noqa: E501
class CategoricalSlot(Slot):
"""Slot type which can be used to branch conversations based on its value."""
type_name = "categorical"
def __init__(
self,
name: Text,
mappings: List[Dict[Text, Any]],
values: Optional[List[Any]] = None,
initial_value: Any = None,
value_reset_delay: Optional[int] = None,
influence_conversation: bool = True,
) -> None:
"""Creates a `Categorical Slot` (see parent class for detailed docstring)."""
super().__init__(
name, mappings, initial_value, value_reset_delay, influence_conversation
)
if values and None in values:
rasa.shared.utils.io.raise_warning(
f"Categorical slot '{self.name}' has `null` listed as a possible value"
f" in the domain file, which translates to `None` in Python. This value"
f" is reserved for when the slot is not set, and should not be listed"
f" as a value in the slot's definition."
f" Rasa will ignore `null` as a possible value for the '{self.name}'"
f" slot. Consider changing this value in your domain file to, for"
f" example, `unset`, or provide the value explicitly as a string by"
f' using quotation marks: "null".',
category=UserWarning,
)
self.values = (
[str(v).lower() for v in values if v is not None] if values else []
)
def add_default_value(self) -> None:
"""Adds the special default value to the list of possible values."""
values = set(self.values)
if rasa.shared.core.constants.DEFAULT_CATEGORICAL_SLOT_VALUE not in values:
self.values.append(
rasa.shared.core.constants.DEFAULT_CATEGORICAL_SLOT_VALUE
)
def persistence_info(self) -> Dict[Text, Any]:
"""Returns serialized slot."""
d = super().persistence_info()
d["values"] = [
value
for value in self.values
# Don't add default slot when persisting it.
# We'll re-add it on the fly when creating the domain.
if value != rasa.shared.core.constants.DEFAULT_CATEGORICAL_SLOT_VALUE
]
return d
def _as_feature(self) -> List[float]:
r = [0.0] * self.feature_dimensionality()
# Return the zero-filled array if the slot is unset (i.e. set to None).
# Conceptually, this is similar to the case when the featurisation process
# fails, hence the returned features here are the same as for that case.
if self.value is None:
return r
try:
for i, v in enumerate(self.values):
if v == str(self.value).lower():
r[i] = 1.0
break
else:
if (
rasa.shared.core.constants.DEFAULT_CATEGORICAL_SLOT_VALUE
in self.values
):
i = self.values.index(
rasa.shared.core.constants.DEFAULT_CATEGORICAL_SLOT_VALUE
)
r[i] = 1.0
else:
rasa.shared.utils.io.raise_warning(
f"Categorical slot '{self.name}' is set to a value "
f"('{self.value}') "
"that is not specified in the domain. "
"Value will be ignored and the slot will "
"behave as if no value is set. "
"Make sure to add all values a categorical "
"slot should store to the domain."
)
except (TypeError, ValueError):
logger.exception("Failed to featurize categorical slot.")
return r
return r
def _feature_dimensionality(self) -> int:
return len(self.values)
class AnySlot(Slot):
"""Slot which can be used to store any value.
Users need to create a subclass of `Slot` in case
the information is supposed to get featurized.
"""
type_name = "any"
def __init__(
self,
name: Text,
mappings: List[Dict[Text, Any]],
initial_value: Any = None,
value_reset_delay: Optional[int] = None,
influence_conversation: bool = False,
) -> None:
"""Creates an `Any Slot` (see parent class for detailed docstring).
Raises:
InvalidSlotConfigError, if slot is featurized.
"""
if influence_conversation:
raise InvalidSlotConfigError(
f"An {AnySlot.__name__} cannot be featurized. "
f"Please use a different slot type for slot '{name}' instead. If you "
f"need to featurize a data type which is not supported out of the box, "
f"implement a custom slot type by subclassing '{Slot.__name__}'. "
f"See the documentation for more information: {DOCS_URL_SLOTS}"
)
super().__init__(
name, mappings, initial_value, value_reset_delay, influence_conversation
)
def __eq__(self, other: Any) -> bool:
"""Compares object with other object."""
if not isinstance(other, AnySlot):
return NotImplemented
return (
self.name == other.name
and self.initial_value == other.initial_value
and self._value_reset_delay == other._value_reset_delay
and self.value == other.value
)
def _as_feature(self) -> List[float]:
raise InvalidSlotConfigError(
f"An {AnySlot.__name__} cannot be featurized. "
f"Please use a different slot type for slot '{self.name}' instead. If you "
f"need to featurize a data type which is not supported out of the box, "
f"implement a custom slot type by subclassing '{Slot.__name__}'. "
f"See the documentation for more information: {DOCS_URL_SLOTS}"
)