-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
67 lines (55 loc) · 2.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch
import torch.nn as nn
import torchvision.models as models
class EncoderCNN(nn.Module):
def __init__(self, embed_size, train_CNN=False):
super(EncoderCNN, self).__init__()
self.train_CNN=train_CNN
self.inception=models.resnet50() # Resnet 50
self.inception.fc=nn.Linear(self.inception.fc.in_features, embed_size) #Removing last CNN layer
self.relu=nn.ReLU()
self.dropout=nn.Dropout(0.5)
def forward(self,images):
features=self.inception(images)
for name,param in self.inception.named_parameters():
if "fc.weight" in name or "fc.bias" in name:
param.requires_grad=True
else:
param.requires_grad=self.train_CNN
return self.dropout(self.relu(features))
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers):
super(DecoderRNN, self).__init__()
self.embed=nn.Embedding(vocab_size, embed_size)
self.lstm= nn.LSTM(embed_size, hidden_size, num_layers)
self.linear=nn.Linear(hidden_size, vocab_size)
self.dropout=nn.Dropout(0.5)
def forward(self, features, captions):
embeddings=self.dropout(self.embed(captions))
embeddings=torch.cat((features.unsqueeze(0), embeddings), dim=0)
hiddens,_=self.lstm(embeddings)
outputs=self.linear(hiddens)
return outputs
class CNNtoRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers):
super(CNNtoRNN, self).__init__()
self.encoderCNN=EncoderCNN(embed_size)
self.decoderRNN=DecoderRNN(embed_size, hidden_size, vocab_size, num_layers)
def forward(self, images, captions):
features=self.encoderCNN(images)
outputs=self.decoderRNN(features, captions)
return outputs
def caption_image(self, image, vocabulary, max_length=50):
result_caption = []
with torch.no_grad():
x = self.encoderCNN(image).unsqueeze(0)
states = None
for _ in range(max_length):
hiddens, states = self.decoderRNN.lstm(x, states)
output = self.decoderRNN.linear(hiddens.squeeze(0))
predicted = output.argmax(1)
result_caption.append(predicted.item())
x = self.decoderRNN.embed(predicted).unsqueeze(0)
if vocabulary.get_itos()[predicted.item()] == "<end>":
break
return [vocabulary.get_itos()[idx] for idx in result_caption]