forked from sreedath/one-pixel-attack-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
differential_evolution.py
306 lines (244 loc) · 12.7 KB
/
differential_evolution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import numpy as np
from scipy.optimize import OptimizeResult, minimize
from scipy._lib._util import check_random_state
__all__ = ['differential_evolution']
_MACHEPS = np.finfo(np.float64).eps
def differential_evolution(func, bounds, args=(), strategy='best1bin',
maxiter=1000, popsize=15, tol=0.01,
mutation=(0.5, 1), recombination=0.7, seed=None,
callback=None, disp=False, polish=True,
init='latinhypercube', atol=0):
solver = DifferentialEvolutionSolver(func, bounds, args=args,
strategy=strategy, maxiter=maxiter,
popsize=popsize, tol=tol,
mutation=mutation,
recombination=recombination,
seed=seed, polish=polish,
callback=callback,
disp=disp, init=init, atol=atol)
return solver.solve()
class DifferentialEvolutionSolver:
_binomial = {'best1bin': '_best1', 'randtobest1bin': '_randtobest1',
'currenttobest1bin': '_currenttobest1', 'best2bin': '_best2',
'rand2bin': '_rand2', 'rand1bin': '_rand1'}
_exponential = {'best1exp': '_best1', 'rand1exp': '_rand1',
'randtobest1exp': '_randtobest1',
'currenttobest1exp': '_currenttobest1',
'best2exp': '_best2', 'rand2exp': '_rand2'}
def __init__(self, func, bounds, args=(), strategy='best1bin', maxiter=1000, popsize=15,
tol=0.01, mutation=(0.5, 1), recombination=0.7, seed=None,
maxfun=np.inf, callback=None, disp=False, polish=True,
init='latinhypercube', atol=0):
if strategy in self._binomial:
self.mutation_func = getattr(self, self._binomial[strategy])
elif strategy in self._exponential:
self.mutation_func = getattr(self, self._exponential[strategy])
else:
raise ValueError("Please select a valid mutation strategy")
self.strategy = strategy
self.callback = callback
self.polish = polish
self.tol, self.atol = tol, atol
self.scale = mutation
if (not np.all(np.isfinite(mutation)) or
np.any(np.array(mutation) >= 2) or
np.any(np.array(mutation) < 0)):
raise ValueError('The mutation constant must be a float in U[0, 2), or specified as a tuple(min, max) where min < max and min, max are in U[0, 2).')
self.dither = None
if hasattr(mutation, '__iter__') and len(mutation) > 1:
self.dither = [mutation[0], mutation[1]]
self.dither.sort()
self.cross_over_probability = recombination
self.func = func
self.args = args
self.limits = np.array(bounds, dtype='float').T
if (np.size(self.limits, 0) != 2 or not np.all(np.isfinite(self.limits))):
raise ValueError('bounds should be a sequence containing real valued (min, max) pairs for each value in x')
if maxiter is None:
maxiter = 1000
self.maxiter = maxiter
if maxfun is None:
maxfun = np.inf
self.maxfun = maxfun
self.__scale_arg1 = 0.5 * (self.limits[0] + self.limits[1])
self.__scale_arg2 = np.fabs(self.limits[0] - self.limits[1])
self.parameter_count = np.size(self.limits, 1)
self.random_number_generator = check_random_state(seed)
self.num_population_members = max(5, popsize * self.parameter_count)
self.population_shape = (self.num_population_members, self.parameter_count)
self._nfev = 0
if isinstance(init, str):
if init == 'latinhypercube':
self.init_population_lhs()
elif init == 'random':
self.init_population_random()
else:
raise ValueError("The population initialization method must be one of 'latinhypercube' or 'random', or an array of shape (M, N) where N is the number of parameters and M>5")
else:
self.init_population_array(init)
self.disp = disp
def init_population_lhs(self):
rng = self.random_number_generator
segsize = 1.0 / self.num_population_members
samples = (segsize * rng.random_sample(self.population_shape) + np.linspace(0., 1., self.num_population_members, endpoint=False)[:, np.newaxis])
self.population = np.zeros_like(samples)
for j in range(self.parameter_count):
order = rng.permutation(range(self.num_population_members))
self.population[:, j] = samples[order, j]
self.population_energies = np.ones(self.num_population_members) * np.inf
self._nfev = 0
def init_population_random(self):
rng = self.random_number_generator
self.population = rng.random_sample(self.population_shape)
self.population_energies = np.ones(self.num_population_members) * np.inf
self._nfev = 0
def init_population_array(self, init):
popn = np.asfarray(init)
if (np.size(popn, 0) < 5 or popn.shape[1] != self.parameter_count or len(popn.shape) != 2):
raise ValueError("The population supplied needs to have shape (M, len(x)), where M > 4.")
self.population = np.clip(self._unscale_parameters(popn), 0, 1)
self.num_population_members = np.size(self.population, 0)
self.population_shape = (self.num_population_members, self.parameter_count)
self.population_energies = np.ones(self.num_population_members) * np.inf
self._nfev = 0
@property
def x(self):
return self._scale_parameters(self.population[0])
@property
def convergence(self):
return np.std(self.population_energies) / np.abs(np.mean(self.population_energies) + _MACHEPS)
def solve(self):
nit, warning_flag = 0, False
status_message = 'Optimization terminated successfully.'
if np.all(np.isinf(self.population_energies)):
self._calculate_population_energies()
for nit in range(1, self.maxiter + 1):
try:
next(self)
except StopIteration:
warning_flag = True
status_message = 'Maximum number of function evaluations has been exceeded.'
break
if self.disp:
print(f"differential_evolution step {nit}: f(x)= {self.population_energies[0]}")
convergence = self.convergence
if self.callback and self.callback(self._scale_parameters(self.population[0]), convergence=self.tol / convergence):
warning_flag = True
status_message = 'callback function requested stop early by returning True'
break
intol = np.std(self.population_energies) <= self.atol + self.tol * np.abs(np.mean(self.population_energies))
if warning_flag or intol:
break
else:
status_message = 'Maximum number of iterations has been exceeded.'
warning_flag = True
DE_result = OptimizeResult(
x=self.x,
fun=self.population_energies[0],
nfev=self._nfev,
nit=nit,
message=status_message,
success=(warning_flag is not True))
if self.polish:
result = minimize(self.func, np.copy(DE_result.x), method='L-BFGS-B', bounds=self.limits.T, args=self.args)
self._nfev += result.nfev
DE_result.nfev = self._nfev
if result.fun < DE_result.fun:
DE_result.fun = result.fun
DE_result.x = result.x
DE_result.jac = result.jac
self.population_energies[0] = result.fun
self.population[0] = self._unscale_parameters(result.x)
return DE_result
def _calculate_population_energies(self):
itersize = max(0, min(len(self.population), self.maxfun - self._nfev + 1))
candidates = self.population[:itersize]
parameters = np.array([self._scale_parameters(c) for c in candidates])
energies = self.func(parameters, *self.args)
self.population_energies = energies
self._nfev += itersize
minval = np.argmin(self.population_energies)
lowest_energy = self.population_energies[minval]
self.population_energies[minval] = self.population_energies[0]
self.population_energies[0] = lowest_energy
self.population[[0, minval], :] = self.population[[minval, 0], :]
def __iter__(self):
return self
def __next__(self):
if np.all(np.isinf(self.population_energies)):
self._calculate_population_energies()
if self.dither is not None:
self.scale = (self.random_number_generator.rand() * (self.dither[1] - self.dither[0]) + self.dither[0])
itersize = max(0, min(self.num_population_members, self.maxfun - self._nfev + 1))
trials = np.array([self._mutate(c) for c in range(itersize)])
for trial in trials: self._ensure_constraint(trial)
parameters = np.array([self._scale_parameters(trial) for trial in trials])
energies = self.func(parameters, *self.args)
self._nfev += itersize
for candidate, (energy, trial) in enumerate(zip(energies, trials)):
if energy < self.population_energies[candidate]:
self.population[candidate] = trial
self.population_energies[candidate] = energy
if energy < self.population_energies[0]:
self.population_energies[0] = energy
self.population[0] = trial
return self.x, self.population_energies[0]
def next(self):
return self.__next__()
def _scale_parameters(self, trial):
return self.__scale_arg1 + (trial - 0.5) * self.__scale_arg2
def _unscale_parameters(self, parameters):
return (parameters - self.__scale_arg1) / self.__scale_arg2 + 0.5
def _ensure_constraint(self, trial):
for index in np.where((trial < 0) | (trial > 1))[0]:
trial[index] = self.random_number_generator.rand()
def _mutate(self, candidate):
trial = np.copy(self.population[candidate])
rng = self.random_number_generator
fill_point = rng.randint(0, self.parameter_count)
if self.strategy in ['currenttobest1exp', 'currenttobest1bin']:
bprime = self.mutation_func(candidate, self._select_samples(candidate, 5))
else:
bprime = self.mutation_func(self._select_samples(candidate, 5))
if self.strategy in self._binomial:
crossovers = rng.rand(self.parameter_count) < self.cross_over_probability
crossovers[fill_point] = True
trial = np.where(crossovers, bprime, trial)
return trial
elif self.strategy in self._exponential:
i = 0
while i < self.parameter_count and rng.rand() < self.cross_over_probability:
trial[fill_point] = bprime[fill_point]
fill_point = (fill_point + 1) % self.parameter_count
i += 1
return trial
def _best1(self, samples):
r0, r1 = samples[:2]
return self.population[0] + self.scale * (self.population[r0] - self.population[r1])
def _rand1(self, samples):
r0, r1, r2 = samples[:3]
return self.population[r0] + self.scale * (self.population[r1] - self.population[r2])
def _randtobest1(self, samples):
r0, r1, r2 = samples[:3]
bprime = np.copy(self.population[r0])
bprime += self.scale * (self.population[0] - bprime)
bprime += self.scale * (self.population[r1] - self.population[r2])
return bprime
def _currenttobest1(self, candidate, samples):
r0, r1 = samples[:2]
bprime = self.population[candidate] + self.scale * (self.population[0] - self.population[candidate] + self.population[r0] - self.population[r1])
return bprime
def _best2(self, samples):
r0, r1, r2, r3 = samples[:4]
bprime = self.population[0] + self.scale * (self.population[r0] + self.population[r1] - self.population[r2] - self.population[r3])
return bprime
def _rand2(self, samples):
r0, r1, r2, r3, r4 = samples
bprime = self.population[r0] + self.scale * (self.population[r1] + self.population[r2] - self.population[r3] - self.population[r4])
return bprime
def _select_samples(self, candidate, number_samples):
idxs = list(range(self.num_population_members))
idxs.remove(candidate)
self.random_number_generator.shuffle(idxs)
idxs = idxs[:number_samples]
return idxs