-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #12 from Rouast-Labs/batch-burst
Distinguish between batch and burst mode; Add real-time webcam example script
- Loading branch information
Showing
22 changed files
with
876 additions
and
157 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
import argparse | ||
import concurrent.futures | ||
import cv2 | ||
import numpy as np | ||
from prpy.constants import SECONDS_PER_MINUTE | ||
from prpy.numpy.face import get_upper_body_roi_from_det | ||
from prpy.numpy.signal import estimate_freq | ||
import sys | ||
import threading | ||
import time | ||
import warnings | ||
|
||
sys.path.append('../vitallens-python') | ||
from vitallens import VitalLens, Mode, Method | ||
from vitallens.buffer import SignalBuffer, MultiSignalBuffer | ||
from vitallens.constants import API_MIN_FRAMES | ||
from vitallens.constants import CALC_HR_MIN, CALC_HR_MAX, CALC_RR_MIN, CALC_RR_MAX | ||
|
||
def draw_roi(frame, roi): | ||
roi = np.asarray(roi).astype(np.int32) | ||
frame = cv2.rectangle(frame, (roi[0], roi[1]), (roi[2], roi[3]), (0, 255, 0), 1) | ||
|
||
def draw_signal(frame, roi, sig, sig_name, sig_conf_name, draw_area_tl_x, draw_area_tl_y, color): | ||
def _draw(frame, vals, display_height, display_width, min_val, max_val, color, thickness): | ||
height_mult = display_height/(max_val - min_val) | ||
width_mult = display_width/(vals.shape[0] - 1) | ||
p1 = (int(draw_area_tl_x), int(draw_area_tl_y + (max_val - vals[0]) * height_mult)) | ||
for i, s in zip(range(1, len(vals)), vals[1:]): | ||
p2 = (int(draw_area_tl_x + i * width_mult), int(draw_area_tl_y + (max_val - s) * height_mult)) | ||
frame = cv2.line(frame, p1, p2, color, thickness) | ||
p1 = p2 | ||
# Derive dims from roi | ||
display_height = (roi[3] - roi[1]) / 2.0 | ||
display_width = (roi[2] - roi[0]) * 0.8 | ||
# Draw signal | ||
if sig_name in sig: | ||
vals = np.asarray(sig[sig_name]) | ||
min_val = np.min(vals) | ||
max_val = np.max(vals) | ||
if max_val - min_val == 0: | ||
return frame | ||
_draw(frame=frame, vals=vals, display_height=display_height, display_width=display_width, | ||
min_val=min_val, max_val=max_val, color=color, thickness=2) | ||
# Draw confidence | ||
if sig_conf_name in sig: | ||
vals = np.asarray(sig[sig_conf_name]) | ||
_draw(frame=frame, vals=vals, display_height=display_height, display_width=display_width, | ||
min_val=0., max_val=1., color=color, thickness=1) | ||
|
||
def draw_fps(frame, fps, text, draw_area_bl_x, draw_area_bl_y): | ||
cv2.putText(frame, text='{}: {:.1f}'.format(text, fps), org=(draw_area_bl_x, draw_area_bl_y), | ||
fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.6, color=(0,255,0), thickness=1) | ||
|
||
def draw_vital(frame, sig, text, sig_name, fps, color, draw_area_bl_x, draw_area_bl_y): | ||
if sig_name in sig: | ||
f_range = (CALC_HR_MIN/SECONDS_PER_MINUTE, CALC_HR_MAX/SECONDS_PER_MINUTE) if 'heart' in sig_name else (CALC_RR_MIN/SECONDS_PER_MINUTE, CALC_RR_MAX/SECONDS_PER_MINUTE) | ||
val = estimate_freq(x=sig[sig_name], f_s=fps, f_res=0.1/SECONDS_PER_MINUTE, f_range=f_range, method='periodogram') * SECONDS_PER_MINUTE | ||
cv2.putText(frame, text='{}: {:.1f}'.format(text, val), org=(draw_area_bl_x, draw_area_bl_y), | ||
fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.6, color=color, thickness=1) | ||
|
||
class VitalLensRunnable: | ||
def __init__(self, method, api_key): | ||
self.active = threading.Event() | ||
self.result = [] | ||
self.vl = VitalLens(method=method, | ||
mode=Mode.BURST, | ||
api_key=api_key, | ||
detect_faces=True, | ||
estimate_running_vitals=True, | ||
export_to_json=False) | ||
def __call__(self, inputs, fps): | ||
self.active.set() | ||
self.result = self.vl(np.asarray(inputs), fps=fps) | ||
self.active.clear() | ||
|
||
def run(args): | ||
cap = cv2.VideoCapture(0) | ||
executor = concurrent.futures.ThreadPoolExecutor(max_workers=1) | ||
vl = VitalLensRunnable(method=args.method, api_key=args.api_key) | ||
signal_buffer = MultiSignalBuffer(size=120, ndim=1, ignore_k=['face']) | ||
fps_buffer = SignalBuffer(size=120, ndim=1, pad_val=np.nan) | ||
frame_buffer = [] | ||
# Sample frames from cv2 video stream attempting to achieve this framerate | ||
target_fps = 30. | ||
# Check if the webcam is opened correctly | ||
if not cap.isOpened(): | ||
raise IOError("Cannot open webcam") | ||
# Read first frame to get dims | ||
_, frame = cap.read() | ||
height, width, _ = frame.shape | ||
roi = None | ||
i = 0 | ||
t, p_t = time.time(), time.time() | ||
fps, p_fps = 30.0, 30.0 | ||
ds_factor = 1 | ||
n_frames = 0 | ||
signals = None | ||
while True: | ||
ret, frame = cap.read() | ||
# Measure frequency | ||
t_prev = t | ||
t = time.time() | ||
if not vl.active.is_set(): | ||
# Process result if available | ||
if len(vl.result) > 0: | ||
# Results are available - fetch and reset | ||
result = vl.result[0] | ||
vl.result = [] | ||
# Update the buffer | ||
signals = signal_buffer.update({ | ||
**{ | ||
f"{key}_sig": value['value'] if 'value' in value else np.array(value['data']) | ||
for key, value in result['vital_signs'].items() | ||
}, | ||
**{ | ||
f"{key}_conf": value['confidence'] if isinstance(value['confidence'], np.ndarray) else np.array(value['confidence']) | ||
for key, value in result['vital_signs'].items() | ||
}, | ||
'face_conf': result['face']['confidence'], | ||
}, dt=n_frames) | ||
with warnings.catch_warnings(): | ||
warnings.simplefilter("ignore", category=RuntimeWarning) | ||
# Measure actual effective sampling frequency at which neural net input was sampled | ||
fps = np.nanmean(fps_buffer.update([(1./(t - t_prev))/ds_factor], dt=n_frames)) | ||
roi = get_upper_body_roi_from_det(result['face']['coordinates'][-1], clip_dims=(width, height), cropped=True) | ||
# Measure prediction frequency - how often predictions are made | ||
p_t_prev = p_t | ||
p_t = time.time() | ||
p_fps = 1./(p_t - p_t_prev) | ||
else: | ||
# No results available | ||
roi = None | ||
signal_buffer.clear() | ||
# Start next prediction | ||
if len(frame_buffer) >= (API_MIN_FRAMES if args.method == Method.VITALLENS else 1): | ||
n_frames = len(frame_buffer) | ||
executor.submit(vl, frame_buffer.copy(), fps) | ||
frame_buffer.clear() | ||
# Sample frames | ||
if i % ds_factor == 0: | ||
# Add current frame to the buffer (BGR -> RGB) | ||
frame_buffer.append(frame[...,::-1]) | ||
i += 1 | ||
# Display | ||
if roi is not None: | ||
draw_roi(frame, roi) | ||
draw_signal( | ||
frame=frame, roi=roi, sig=signals, sig_name='ppg_waveform_sig', sig_conf_name='ppg_waveform_conf', | ||
draw_area_tl_x=roi[2]+20, draw_area_tl_y=roi[1], color=(0, 0, 255)) | ||
draw_signal( | ||
frame=frame, roi=roi, sig=signals, sig_name='respiratory_waveform_sig', sig_conf_name='respiratory_waveform_conf', | ||
draw_area_tl_x=roi[2]+20, draw_area_tl_y=int(roi[1]+(roi[3]-roi[1])/2.0), color=(255, 0, 0)) | ||
draw_fps(frame, fps=fps, text="fps", draw_area_bl_x=roi[0], draw_area_bl_y=roi[3]+20) | ||
draw_fps(frame, fps=p_fps, text="p_fps", draw_area_bl_x=int(roi[0]+0.4*(roi[2]-roi[0])), draw_area_bl_y=roi[3]+20) | ||
draw_vital(frame, sig=signals, text="hr [bpm]", sig_name='ppg_waveform_sig', fps=fps, color=(0,0,255), draw_area_bl_x=roi[2]+20, draw_area_bl_y=int(roi[1]+(roi[3]-roi[1])/2.0)) | ||
draw_vital(frame, sig=signals, text="rr [rpm]", sig_name='respiratory_waveform_sig', fps=fps, color=(255,0,0), draw_area_bl_x=roi[2]+20, draw_area_bl_y=roi[3]) | ||
cv2.imshow('Live', frame) | ||
c = cv2.waitKey(1) | ||
if c == 27: | ||
break | ||
# Even out fps | ||
dt_req = 1./target_fps - (time.time() - t) | ||
if dt_req > 0: time.sleep(dt_req) | ||
|
||
cap.release() | ||
cv2.destroyAllWindows() | ||
|
||
def method_type(name): | ||
try: | ||
return Method[name] | ||
except KeyError: | ||
raise argparse.ArgumentTypeError(f"{name} is not a valid Method") | ||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--api_key', type=str, default='', help='Your API key. Get one for free at https://www.rouast.com/api.') | ||
parser.add_argument('--method', type=method_type, default='VITALLENS', help='Choice of method (VITALLENS, POS, CHROM, or G)') | ||
args = parser.parse_args() | ||
run(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.