-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblip.py
24 lines (18 loc) · 911 Bytes
/
blip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, AutoModelWithLMHead
processor = BlipProcessor.from_pretrained(
"Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-large").to("cuda")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
# conditional image captioning
text = "a photography of"
inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
# unconditional image captioning
inputs = processor(raw_image, return_tensors="pt").to("cuda")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))