-
Notifications
You must be signed in to change notification settings - Fork 70
/
visual_fm.py
executable file
·141 lines (114 loc) · 4.9 KB
/
visual_fm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import sys
import os
import yaml
import torch
import numpy as np
import torchvision.transforms as transforms
from omnixai.explainers.vision.specific.feature_visualization.visualizer import \
FeatureMapVisualizer
sys.path.append("../")
sys.path.append(os.getcwd())
from utils.defense_utils.dbd.model.model import SelfModel, LinearModel
from utils.defense_utils.dbd.model.utils import (
get_network_dbd,
load_state,
get_criterion,
get_optimizer,
get_scheduler,
)
from utils.save_load_attack import load_attack_result
from utils.aggregate_block.model_trainer_generate import generate_cls_model
from utils.aggregate_block.fix_random import fix_random
from utils.aggregate_block.dataset_and_transform_generate import (
get_transform,
get_dataset_denormalization,
)
from visual_utils import *
# Basic setting: args
args = get_args()
with open(args.yaml_path, "r") as stream:
config = yaml.safe_load(stream)
config.update({k: v for k, v in args.__dict__.items() if v is not None})
args.__dict__ = config
args = preprocess_args(args)
fix_random(int(args.random_seed))
save_path_attack = "./record/" + args.result_file_attack
visual_save_path = save_path_attack + "/visual"
# Load result
if args.prototype:
result_attack = load_prototype_result(args, save_path_attack)
else:
result_attack = load_attack_result(save_path_attack + "/attack_result.pt")
# Select all classes and all samples
selected_classes = np.arange(args.num_classes)
# keep the same transforms for train and test dataset for better visualization
result_attack["clean_train"].wrap_img_transform = result_attack["clean_test"].wrap_img_transform
result_attack["bd_train"].wrap_img_transform = result_attack["bd_test"].wrap_img_transform
# Create dataset
if args.visual_dataset == 'clean_train':
visual_dataset = result_attack["clean_train"]
elif args.visual_dataset == 'clean_test':
visual_dataset = result_attack["clean_test"]
elif args.visual_dataset == 'bd_train':
visual_dataset = result_attack["bd_train"]
elif args.visual_dataset == 'bd_test':
visual_dataset = result_attack["bd_test"]
else:
assert False, "Illegal vis_class"
print(f'Create visualization dataset with \n \t Dataset: {args.visual_dataset} \n \t Number of samples: {len(visual_dataset)} \n \t Selected classes: {selected_classes}')
# Create denormalization function
for trans_t in visual_dataset.wrap_img_transform.transforms:
if isinstance(trans_t, transforms.Normalize):
denormalizer = get_dataset_denormalization(trans_t)
# Load model
model_visual = generate_cls_model(args.model, args.num_classes)
if args.result_file_defense != "None":
save_path_defense = "./record/" + args.result_file_defense
visual_save_path = save_path_defense + "/visual"
result_defense = load_attack_result(
save_path_defense + "/defense_result.pt")
defense_method = args.result_file_defense.split('/')[-1]
if defense_method == 'fp':
model_visual.layer4[1].conv2 = torch.nn.Conv2d(
512, 512 - result_defense['index'], (3, 3), stride=1, padding=1, bias=False)
model_visual.linear = torch.nn.Linear(
(512 - result_defense['index'])*1, args.num_classes)
if defense_method == 'dbd':
backbone = get_network_dbd(args)
model_visual = LinearModel(
backbone, backbone.feature_dim, args.num_classes)
model_visual.load_state_dict(result_defense["model"])
print(f"Load model {args.model} from {args.result_file_defense}")
else:
model_visual.load_state_dict(result_attack["model"])
print(f"Load model {args.model} from {args.result_file_attack}")
model_visual.to(args.device)
# !!! Important to set eval mode !!!
model_visual.eval()
# make visual_save_path if not exist
os.mkdir(visual_save_path) if not os.path.exists(visual_save_path) else None
# Choose a image to get feature maps from a target layer
module_dict = dict(model_visual.named_modules())
target_layer = module_dict[args.target_layer_name]
target_image_index = np.random.randint(0, len(visual_dataset))
target_image = visual_dataset[target_image_index][0].unsqueeze(0)
print(f"Choose image index {target_image_index} from {args.visual_dataset} as target image")
############## Feature Maps ##################
print("Plotting Feature Maps")
explainer = FeatureMapVisualizer(
model=model_visual,
target_layer=target_layer,
preprocess_function=lambda x:x
)
feature_map = explainer.extractor.extract(target_image)
num_cnn = feature_map.shape[-1]
num_col = 16
num_row = int(np.ceil(num_cnn/num_col))
fig, axes = plt.subplots(nrows=num_row, ncols=num_col, figsize=(4*num_col, 5*num_row))
for cnn_i in range(num_cnn):
ax = axes[cnn_i//num_col, cnn_i%num_col]
ax.imshow(feature_map[0, :, :, cnn_i], cmap='gray')
ax.set_title(f'Kernel {cnn_i}')
plt.tight_layout()
plt.savefig(visual_save_path + f"/feature_map_{args.visual_dataset}.png")
print(f'Save to {visual_save_path + f"/feature_map_{args.visual_dataset}"}.png')