-
Notifications
You must be signed in to change notification settings - Fork 71
/
visual_landscape.py
executable file
·507 lines (416 loc) · 18.9 KB
/
visual_landscape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import sys
import os
import yaml
sys.path.append("../")
assert os.path.exists(
"./visualization/loss-landscape"), "Please clone the repo https://github.com/tomgoldstein/loss-landscape to ./visualization/"
sys.path.append("./visualization/loss-landscape")
sys.path.append(os.getcwd())
import time
import scheduler
import torch.nn as nn
import evaluation
import mpi4pytorch as mpi
import h52vtp as h52vtp
import plot_surface as plot_surface
import plot_1D as plot_1D
import plot_2D as plot_2D
import net_plotter as net_plotter
import projection as proj
from utils.defense_utils.dbd.model.model import SelfModel, LinearModel
from utils.defense_utils.dbd.model.utils import (
get_network_dbd,
load_state,
get_criterion,
get_optimizer,
get_scheduler,
)
from utils.save_load_attack import load_attack_result
from utils.aggregate_block.model_trainer_generate import generate_cls_model
from utils.aggregate_block.fix_random import fix_random
from utils.aggregate_block.dataset_and_transform_generate import (
get_transform,
get_dataset_denormalization,
)
from visual_utils import *
import torch
import numpy as np
import torchvision.transforms as transforms
import socket
import h5py
from matplotlib import pyplot as plt
from matplotlib import cm
import h5_util
from os.path import exists, commonprefix
# modified from https://github.com/tomgoldstein/loss-landscape/blob/master/net_plotter.py by changing the load model part.
def setup_direction(args, dir_file, net, net2 = None, net3 = None):
"""
Setup the h5 file to store the directions.
- xdirection, ydirection: The pertubation direction added to the mdoel.
The direction is a list of tensors.
"""
print('-------------------------------------------------------------------')
print(f'setup_direction {dir_file}')
print('-------------------------------------------------------------------')
# Skip if the direction file already exists
if exists(dir_file):
f = h5py.File(dir_file, 'r')
if (args.y and 'ydirection' in f.keys()) or 'xdirection' in f.keys():
f.close()
print ("%s is already setted up" % dir_file)
return
f.close()
# Create the plotting directions
f = h5py.File(dir_file,'w') # create file, fail if exists
if not args.dir_file:
print("Setting up the plotting directions...")
if net2:
print("Using target direction")
xdirection = net_plotter.create_target_direction(net, net2, args.dir_type)
else:
print("Using random direction")
xdirection = net_plotter.create_random_direction(net, args.dir_type, args.xignore, args.xnorm)
h5_util.write_list(f, 'xdirection', xdirection)
if args.y:
if net3:
print("Using target direction")
ydirection = net_plotter.create_target_direction(net, net3, args.dir_type)
else:
print("Using random direction")
ydirection = net_plotter.create_random_direction(net, args.dir_type, args.yignore, args.ynorm)
h5_util.write_list(f, 'ydirection', ydirection)
f.close()
print ("direction file created: %s" % dir_file)
# modified from https://github.com/tomgoldstein/loss-landscape/blob/master/plot_surface.py by change the f.close() to avoid some bugs
def crunch(surf_file, net, w, s, d, dataloader, loss_key, acc_key, comm, rank, args):
"""
Calculate the loss values and accuracies of modified models in parallel
using MPI reduce.
"""
loaded = False
while not loaded:
try:
# read only to avoid conflict with other processes
f = h5py.File(surf_file, 'r')
loaded = True
except:
print(f"rank-{rank}:Error opening file, retrying...", flush=True)
time.sleep(5)
losses, accuracies = [], []
xcoordinates = f['xcoordinates'][:]
ycoordinates = f['ycoordinates'][:] if 'ycoordinates' in f.keys() else None
fkeys = list(f.keys())
f.close()
if loss_key not in fkeys:
shape = xcoordinates.shape if ycoordinates is None else (len(xcoordinates),len(ycoordinates))
losses = -np.ones(shape=shape)
accuracies = -np.ones(shape=shape)
else:
print(f"rank-{rank}:losses and accuracies already calculated", flush=True)
return
# Generate a list of indices of 'losses' that need to be filled in.
# The coordinates of each unfilled index (with respect to the direction vectors
# stored in 'd') are stored in 'coords'.
inds, coords, inds_nums = scheduler.get_job_indices(losses, xcoordinates, ycoordinates, comm)
print('Computing %d values for rank %d'% (len(inds), rank))
start_time = time.time()
total_sync = 0.0
criterion = nn.CrossEntropyLoss()
if args.loss_name == 'mse':
criterion = nn.MSELoss()
# Loop over all uncalculated loss values
for count, ind in enumerate(inds):
# Get the coordinates of the loss value being calculated
coord = coords[count]
# Load the weights corresponding to those coordinates into the net
if args.dir_type == 'weights':
net_plotter.set_weights(net.module if args.ngpu > 1 else net, w, d, coord)
elif args.dir_type == 'states':
net_plotter.set_states(net.module if args.ngpu > 1 else net, s, d, coord)
# Record the time to compute the loss value
loss_start = time.time()
loss, acc = evaluation.eval_loss(net, criterion, dataloader, args.cuda)
loss_compute_time = time.time() - loss_start
# Record the result in the local array
losses.ravel()[ind] = loss
accuracies.ravel()[ind] = acc
# Send updated plot data to the master node
syc_start = time.time()
losses = mpi.reduce_max(comm, losses)
accuracies = mpi.reduce_max(comm, accuracies)
syc_time = time.time() - syc_start
total_sync += syc_time
# Only the master node writes to the file - this avoids write conflicts
if rank == 0:
f = h5py.File(surf_file, 'r+')
try:
f[loss_key][:] = losses
f[acc_key][:] = accuracies
except:
f[loss_key] = losses
f[acc_key] = accuracies
f.flush()
f.close()
print('Evaluating rank %d %d/%d (%.1f%%) coord=%s \t%s= %.3f \t%s=%.2f \ttime=%.2f \tsync=%.2f' % (
rank, count, len(inds), 100.0 * count/len(inds), str(coord), loss_key, loss,
acc_key, acc, loss_compute_time, syc_time))
# This is only needed to make MPI run smoothly. If this process has less work than
# the rank0 process, then we need to keep calling reduce so the rank0 process doesn't block
for i in range(max(inds_nums) - len(inds)):
losses = mpi.reduce_max(comm, losses)
accuracies = mpi.reduce_max(comm, accuracies)
total_time = time.time() - start_time
print('Rank %d done! Total time: %.2f Sync: %.2f' % (rank, total_time, total_sync))
# Basic setting: args
args = get_args()
with open(args.yaml_path, "r") as stream:
config = yaml.safe_load(stream)
config.update({k: v for k, v in args.__dict__.items() if v is not None})
args.__dict__ = config
args = preprocess_args(args)
fix_random(int(args.random_seed))
save_path_attack = "./record/" + args.result_file_attack
visual_save_path = save_path_attack + "/visual"
# Load result
if args.prototype:
result_attack = load_prototype_result(args, save_path_attack)
else:
result_attack = load_attack_result(save_path_attack + "/attack_result.pt")
selected_classes = np.arange(args.num_classes)
# keep the same transforms for train and test dataset for better visualization
result_attack["clean_train"].wrap_img_transform = result_attack["clean_test"].wrap_img_transform
result_attack["bd_train"].wrap_img_transform = result_attack["bd_test"].wrap_img_transform
# Create dataset
if args.visual_dataset == 'clean_train':
visual_dataset = result_attack["clean_train"]
elif args.visual_dataset == 'bd_train':
visual_dataset = result_attack["bd_train"]
visual_dataset.wrapped_dataset.getitem_all = False # only return img and label
else:
assert False, "Illegal vis_class"
print(
f'Create visualization dataset with \n \t Dataset: {args.visual_dataset} \n \t Number of samples: {len(visual_dataset)} \n \t Selected classes: {selected_classes}')
# Create data loader
data_loader = torch.utils.data.DataLoader(
visual_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False
)
# Create denormalization function
for trans_t in data_loader.dataset.wrap_img_transform.transforms:
if isinstance(trans_t, transforms.Normalize):
denormalizer = get_dataset_denormalization(trans_t)
# Load model
model_visual = generate_cls_model(args.model, args.num_classes)
if args.result_file_defense != "None":
save_path_defense = "./record/" + args.result_file_defense
visual_save_path = save_path_defense + "/visual"
result_defense = load_attack_result(
save_path_defense + "/defense_result.pt")
defense_method = args.result_file_defense.split('/')[-1]
if defense_method == 'fp':
model_visual.layer4[1].conv2 = torch.nn.Conv2d(
512, 512 - result_defense['index'], (3, 3), stride=1, padding=1, bias=False)
model_visual.linear = torch.nn.Linear(
(512 - result_defense['index'])*1, args.num_classes)
if defense_method == 'dbd':
backbone = get_network_dbd(args)
model_visual = LinearModel(
backbone, backbone.feature_dim, args.num_classes)
model_visual.load_state_dict(result_defense["model"])
print(f"Load model {args.model} from {args.result_file_defense}")
else:
model_visual.load_state_dict(result_attack["model"])
print(f"Load model {args.model} from {args.result_file_attack}")
# !!! Important to set eval mode !!!
model_visual.eval()
# make visual_save_path if not exist
os.mkdir(visual_save_path) if not os.path.exists(visual_save_path) else None
############################################
######## 2. Plot the loss landscape #######
############################################
print('Plotting the loss landscape')
# additonal args
args.mpi = True
args.cuda = True if "cuda" in args.device else False
args.show = False
args.proj_file = ""
args.dir_file = ''
# --------------------------------------------------------------------------
# Environment setup
# --------------------------------------------------------------------------
if args.mpi:
comm = mpi.setup_MPI()
rank, nproc = comm.Get_rank(), comm.Get_size()
print(f"Get rank {rank}")
else:
comm, rank, nproc = None, 0, 1
# in case of multiple GPUs per node, set the GPU to use for each rank
if args.cuda:
if not torch.cuda.is_available():
raise Exception(
'User selected cuda option, but cuda is not available on this machine')
gpu_count = torch.cuda.device_count()
torch.cuda.set_device(rank % gpu_count)
print('Rank %d use GPU %d of %d GPUs on %s' %
(rank, torch.cuda.current_device(), gpu_count, socket.gethostname()))
# --------------------------------------------------------------------------
# Check plotting resolution
# --------------------------------------------------------------------------
try:
args.xmin, args.xmax, args.xnum = [float(a) for a in args.x.split(':')]
args.ymin, args.ymax, args.ynum = (None, None, None)
args.xnum = int(args.xnum)
if args.y:
args.ymin, args.ymax, args.ynum = [float(a) for a in args.y.split(':')]
assert args.ymin and args.ymax and args.ynum, \
'You specified some arguments for the y axis, but not all'
args.ynum = int(args.ynum)
except:
raise Exception(
'Improper format for x- or y-coordinates. Try something like -1:1:51')
if args.dir_file:
print('Use given dir_file in args:', args.dir_file)
else:
dir_file = save_path_attack + '/' + args.result_file_attack + '_direction.h5'
print(f'No dir_file is given, generate dir_file at {dir_file} now')
# --------------------------------------------------------------------------
# Load models and extract parameters
# --------------------------------------------------------------------------
w = net_plotter.get_weights(model_visual) # initial parameters
# deepcopy since state_dict are references
s = copy.deepcopy(model_visual.state_dict())
if args.ngpu > 1:
# data parallel with multiple GPUs on a single node
net = torch.nn.DataParallel(
model_visual, device_ids=range(torch.cuda.device_count()))
# --------------------------------------------------------------------------
# Setup the direction file and the surface file
# --------------------------------------------------------------------------
# Only used for saving direction and surface file
args.model_file = visual_save_path + f'/{args.result_file_attack}'
args.model_file1 = ""
args.model_file2 = ""
args.model_file3 = ""
model_1_perb = None
model_2_perb = None
criterion = nn.CrossEntropyLoss()
if args.loss_name == 'mse':
criterion = nn.MSELoss()
if rank == 0 and args.dir_gen == 'hessian':
args.model_file1 = visual_save_path + f'/{args.result_file_attack}_model_1.pt'
args.model_file2 = visual_save_path + f'/{args.result_file_attack}_model_2.pt'
if os.path.exists(args.model_file1) and os.path.exists(args.model_file2):
print(f'Load model_1 and model_2 from {args.model_file1} and {args.model_file2}')
model_1_perb = generate_cls_model(args.model, args.num_classes)
model_2_perb = generate_cls_model(args.model, args.num_classes)
model_1_perb.load_state_dict(torch.load(args.model_file1))
model_2_perb.load_state_dict(torch.load(args.model_file2))
else:
# compute the top-2 eigenvector of hessian matrix as directions
from pyhessian import hessian # Hessian computation
# This is a simple function, that will allow us to perturb the model paramters and get the result
# from https://github.com/amirgholami/PyHessian/blob/master/Hessian_Tutorial.ipynb
def get_params(model_orig, model_perb, direction, alpha):
for m_orig, m_perb, d in zip(model_orig.parameters(), model_perb.parameters(), direction):
m_perb.data = m_orig.data + alpha * d
return model_perb
model_1 = generate_cls_model(args.model, args.num_classes)
model_2 = generate_cls_model(args.model, args.num_classes)
model_visual = model_visual.to(args.device)
model_1 = model_1.to(args.device)
model_2 = model_2.to(args.device)
# get a batch of data
batch_x, batch_y = next(iter(data_loader))
batch_x = batch_x.to(args.device)
batch_y = batch_y.to(args.device)
# create the hessian computation module
hessian_comp = hessian(model_visual, criterion, data=(batch_x, batch_y), cuda=args.cuda)
top_eigenvalues, top_eigenvector = hessian_comp.eigenvalues(top_n=2)
model_1_perb = get_params(model_visual, model_1, top_eigenvector[0], 1)
model_2_perb = get_params(model_visual, model_2, top_eigenvector[1], 1)
model_1_perb.eval()
model_2_perb.eval()
torch.save(model_1_perb.cpu().state_dict(), args.model_file1)
torch.save(model_2_perb.cpu().state_dict(), args.model_file2)
print('Use eigenvectors of hessian matrix as directions.')
# resume all parameters to keep the same as other ranks
model_visual = model_visual.cpu()
args.model_file1 = ""
args.model_file2 = ""
args.surf_file = ""
args.plot = True
args.data_split = 0
args.proj_file = ""
dir_file = net_plotter.name_direction_file(args) # name the direction file
if rank == 0:
setup_direction(args, dir_file, net = model_visual, net2 = model_1_perb, net3 = model_2_perb)
surf_file = plot_surface.name_surface_file(args, dir_file)
if rank == 0:
plot_surface.setup_surface_file(args, surf_file, dir_file)
# load directions
loaded = False
while not loaded:
try:
d = net_plotter.load_directions(dir_file)
print(f'rank-{rank}: directions loaded')
loaded = True
except:
print(f'rank-{rank}: Waiting for direction file {dir_file} to be loaded...', flush=True)
print('Please restart the program if the direction file is not loaded after 30 seconds.')
time.sleep(rank*2)
# calculate the consine similarity of the two directions
if len(d) == 2 and rank == 0:
similarity = proj.cal_angle(proj.nplist_to_tensor(
d[0]), proj.nplist_to_tensor(d[1]))
print('cosine similarity between x-axis and y-axis: %f' % similarity)
# --------------------------------------------------------------------------
# Start the computation
# --------------------------------------------------------------------------
crunch(surf_file, model_visual, w, s, d,
data_loader, 'train_loss', 'train_acc', comm, rank, args)
# --------------------------------------------------------------------------
# Plot figures
# --------------------------------------------------------------------------
if args.plot and rank == 0:
print("plotting landscape")
# wait 3 seconds
time.sleep(2.5)
f = h5py.File(surf_file, 'r')
x = np.array(f['xcoordinates'][:])
y = np.array(f['ycoordinates'][:])
X, Y = np.meshgrid(x, y)
surf_name = "train_loss"
if surf_name in f.keys():
Z = np.array(f[surf_name][:])
elif surf_name == 'train_err' or surf_name == 'test_err':
Z = 100 - np.array(f[surf_name][:])
else:
print('%s is not found in %s' % (surf_name, surf_file))
# --------------------------------------------------------------------
# Plot 3D surface
# --------------------------
fig = plt.figure()
def Axes3D(fig):
return fig.add_subplot(projection='3d')
ax = Axes3D(fig)
surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
fig.colorbar(surf, shrink=0.5, aspect=5)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.tight_layout()
plt.savefig(visual_save_path + f"/landscape_{args.visual_dataset}.png")
print(f'Save to {visual_save_path + f"/landscape_{args.visual_dataset}"}.png')
# save to vtk file. you can use paraview to visualize the results
h52vtp.h5_to_vtp(surf_file, surf_name, log=False, zmax=10, interp=1000)
# Another way to show the results is the function provided by plot_2D
# if rank == 0:
# args.vmin = 0.1
# args.vmax = 10
# args.vlevel = 0.5
# if args.y and args.proj_file:
# plot_2D.plot_contour_trajectory(surf_file, dir_file, args.proj_file, 'train_loss', args.show)
# elif args.y:
# plot_2D.plot_2d_contour(surf_file, 'train_loss', args.vmin, args.vmax, args.vlevel, args.show)
# else:
# plot_1D.plot_1d_loss_err(surf_file, args.xmin, args.xmax, args.loss_max, args.log, args.show)