-
Notifications
You must be signed in to change notification settings - Fork 71
/
visual_shap.py
executable file
·209 lines (174 loc) · 7.84 KB
/
visual_shap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import sys
import os
sys.path.append("../")
sys.path.append("../../")
sys.path.append(os.getcwd())
from utils.defense_utils.dbd.model.model import SelfModel, LinearModel
from utils.defense_utils.dbd.model.utils import (
get_network_dbd,
load_state,
get_criterion,
get_optimizer,
get_scheduler,
)
from utils.save_load_attack import load_attack_result
from utils.aggregate_block.model_trainer_generate import generate_cls_model
from utils.aggregate_block.fix_random import fix_random
from utils.aggregate_block.dataset_and_transform_generate import (
get_transform,
get_dataset_denormalization,
)
from visual_utils import *
import yaml
import torch
import shap
import numpy as np
import torchvision.transforms as transforms
# Basic setting: args
args = get_args()
with open(args.yaml_path, "r") as stream:
config = yaml.safe_load(stream)
config.update({k: v for k, v in args.__dict__.items() if v is not None})
args.__dict__ = config
args = preprocess_args(args)
fix_random(int(args.random_seed))
save_path_attack = "./record/" + args.result_file_attack
visual_save_path = save_path_attack + "/visual"
# Load result
if args.prototype:
result_attack = load_prototype_result(args, save_path_attack)
else:
result_attack = load_attack_result(save_path_attack + "/attack_result.pt")
selected_classes = np.arange(args.num_classes)
# Select classes to visualize
if args.num_classes > args.c_sub:
selected_classes = np.delete(selected_classes, args.target_class)
selected_classes = np.random.choice(
selected_classes, args.c_sub-1, replace=False)
selected_classes = np.append(selected_classes, args.target_class)
# keep the same transforms for train and test dataset for better visualization
result_attack["clean_train"].wrap_img_transform = result_attack["clean_test"].wrap_img_transform
result_attack["bd_train"].wrap_img_transform = result_attack["bd_test"].wrap_img_transform
# Create dataset
if args.visual_dataset == 'mixed':
bd_test_with_trans = result_attack["bd_test"]
visual_dataset = generate_mix_dataset(
bd_test_with_trans, args.target_class, args.pratio, selected_classes, max_num_samples=args.n_sub)
elif args.visual_dataset == 'clean_train':
clean_train_with_trans = result_attack["clean_train"]
visual_dataset = generate_clean_dataset(
clean_train_with_trans, selected_classes, max_num_samples=args.n_sub)
elif args.visual_dataset == 'clean_test':
clean_test_with_trans = result_attack["clean_test"]
visual_dataset = generate_clean_dataset(
clean_test_with_trans, selected_classes, max_num_samples=args.n_sub)
elif args.visual_dataset == 'bd_train':
bd_train_with_trans = result_attack["bd_train"]
visual_dataset = generate_bd_dataset(
bd_train_with_trans, args.target_class, selected_classes, max_num_samples=args.n_sub)
elif args.visual_dataset == 'bd_test':
bd_test_with_trans = result_attack["bd_test"]
visual_dataset = generate_bd_dataset(
bd_test_with_trans, args.target_class, selected_classes, max_num_samples=args.n_sub)
else:
assert False, "Illegal vis_class"
print(
f'Create visualization dataset with \n \t Dataset: {args.visual_dataset} \n \t Number of samples: {len(visual_dataset)} \n \t Selected classes: {selected_classes}')
# Create data loader
data_loader = torch.utils.data.DataLoader(
visual_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False
)
# Create denormalization function
for trans_t in data_loader.dataset.wrap_img_transform.transforms:
if isinstance(trans_t, transforms.Normalize):
denormalizer = get_dataset_denormalization(trans_t)
# Prepare background data
num_bg = 200
background_idx = np.random.choice(len(visual_dataset), num_bg, replace=False)
background_samples = []
for i in background_idx:
background_samples.append(visual_dataset[i][0].unsqueeze(0))
background_samples = torch.cat(background_samples, axis=0).to(args.device)
# Choose samples to show SHAP values. By Default, 2 clean images + 2 Poison images. If no enough Poison images, use 4 clean images instead.AblationCAM
total_num = 4
bd_num = 0
visual_samples = []
visual_labels = []
visual_poison_indicator = np.array(
get_poison_indicator_from_bd_dataset(visual_dataset))
if visual_poison_indicator.sum() > 0:
print(f'Number Poisoned samples: {visual_poison_indicator.sum()}')
# random choose two poisoned samples
selected_bd_idx = np.random.choice(
np.where(visual_poison_indicator == 1)[0], 2, replace=False)
for i in selected_bd_idx:
visual_samples.append(visual_dataset[i][0].unsqueeze(0))
visual_labels.append(visual_dataset[i][4])
bd_num = len(selected_bd_idx)
print(f'Select {bd_num} poisoned samples')
# Trun all samples to clean
with temporary_all_clean(visual_dataset):
# you can just set selected_clean_idx = selected_bd_idx to build the correspondence between clean samples and poisoned samples
selected_clean_idx = np.random.choice(
len(visual_dataset), total_num-bd_num, replace=False)
for i in selected_clean_idx:
visual_samples.append(visual_dataset[i][0].unsqueeze(0))
visual_labels.append(visual_dataset[i][1])
print(f'Select {len(selected_clean_idx)} clean samples')
# Clean sample first
visual_samples = visual_samples[::-1]
visual_labels = visual_labels[::-1]
visual_samples = torch.cat(visual_samples, axis=0).to(args.device)
# Load model
model_visual = generate_cls_model(args.model, args.num_classes)
if args.result_file_defense != "None":
save_path_defense = "./record/" + args.result_file_defense
visual_save_path = save_path_defense + "/visual"
result_defense = load_attack_result(
save_path_defense + "/defense_result.pt")
defense_method = args.result_file_defense.split('/')[-1]
if defense_method == 'fp':
model_visual.layer4[1].conv2 = torch.nn.Conv2d(
512, 512 - result_defense['index'], (3, 3), stride=1, padding=1, bias=False)
model_visual.linear = torch.nn.Linear(
(512 - result_defense['index'])*1, args.num_classes)
if defense_method == 'dbd':
backbone = get_network_dbd(args)
model_visual = LinearModel(
backbone, backbone.feature_dim, args.num_classes)
model_visual.load_state_dict(result_defense["model"])
print(f"Load model {args.model} from {args.result_file_defense}")
else:
model_visual.load_state_dict(result_attack["model"])
print(f"Load model {args.model} from {args.result_file_attack}")
model_visual.to(args.device)
# !!! Important to set eval mode !!!
model_visual.eval()
# make visual_save_path if not exist
os.mkdir(visual_save_path) if not os.path.exists(visual_save_path) else None
############## SHAP ##################
print('Plotting SHAP')
# Choose layer for feature extraction
module_dict = dict(model_visual.named_modules())
target_layer = module_dict[args.target_layer_name]
print(f'Choose layer {args.target_layer_name} from model {args.model}')
sfm = torch.nn.Softmax(dim=1)
outputs = model_visual(visual_samples)
pre_p, pre_label = torch.max(sfm(outputs), dim=1)
e = shap.GradientExplainer(
(model_visual, target_layer), background_samples, local_smoothing=0)
shap_values, indexes = e.shap_values(visual_samples, ranked_outputs=5)
# get the names for the classes
class_names = np.array(args.class_names).reshape([-1])
index_names = np.vectorize(
lambda x: class_names[x].capitalize())(indexes.cpu())
# plot the explanations
shap_numpy = [np.swapaxes(np.swapaxes(s, 1, -1), 1, 2) for s in shap_values]
test_numpy = np.swapaxes(
np.swapaxes(denormalizer(visual_samples.cpu()).numpy(), 1, -1), 1, 2
)
test_numpy[test_numpy < 1e-12] = 1e-12 # for some numerical issue
shap.image_plot(shap_numpy, test_numpy, index_names, show=False)
# plt.tight_layout() is not working
plt.savefig(visual_save_path + f"/shap_{args.visual_dataset}.png")
print(f'Save to {visual_save_path + f"/shap_{args.visual_dataset}"}.png')