-
Notifications
You must be signed in to change notification settings - Fork 70
/
ac.py
executable file
·1076 lines (926 loc) · 49.1 KB
/
ac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# MIT License
#
# Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2018
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
# persons to whom the Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
'''
Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering
This file is modified based on the following source:
link : https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/art/defences/detector/poison/activation_defence.py.
The defense method is called ac.
@article{chen2018detecting,
title={Detecting backdoor attacks on deep neural networks by activation clustering},
author={Chen, Bryant and Carvalho, Wilka and Baracaldo, Nathalie and Ludwig, Heiko and Edwards, Benjamin and Lee, Taesung and Molloy, Ian and Srivastava, Biplav},
journal={arXiv preprint arXiv:1811.03728},
year={2018}
}
The update include:
1. data preprocess and dataset setting
2. model setting
3. args and config
4. during training the backdoor attack generalization to lower poison ratio (generalize_to_lower_pratio)
5. save process
6. new standard: robust accuracy
7. reintegrate the framework
8. hook the activation of the neural network
9. add some addtional backbone such as preactresnet18, resnet18 and vgg19
10. for data sets with many analogies, the classification bug existing in the original method is fixed
basic sturcture for defense method:
1. basic setting: args
2. attack result(model, train data, test data)
3. ac defense:
a. classify data by activation results
b. identify backdoor data according to classification results
c. retrain the model with filtered data
4. test the result and get ASR, ACC, RC
'''
import argparse
import os,sys
import numpy as np
import torch
import torch.nn as nn
sys.path.append('../')
sys.path.append(os.getcwd())
from pprint import pformat
import yaml
import logging
import time
from typing import Any, Dict, List, Optional, Tuple, TYPE_CHECKING
from defense.base import defense
from utils.aggregate_block.train_settings_generate import argparser_criterion, argparser_opt_scheduler
from utils.trainer_cls import PureCleanModelTrainer
from utils.aggregate_block.fix_random import fix_random
from utils.aggregate_block.model_trainer_generate import generate_cls_model
from utils.log_assist import get_git_info
from utils.aggregate_block.dataset_and_transform_generate import get_input_shape, get_num_classes, get_transform
from utils.save_load_attack import load_attack_result, save_defense_result
from utils.nCHW_nHWC import *
from sklearn.cluster import KMeans
class ac(defense):
r"""Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering
basic structure:
1. config args, save_path, fix random seed
2. load the backdoor attack data and backdoor test data
3. ac defense:
a. classify data by activation results
b. identify backdoor data according to classification results
c. retrain the model with filtered data
4. test the result and get ASR, ACC, RC
.. code-block:: python
parser = argparse.ArgumentParser(description=sys.argv[0])
ac.add_arguments(parser)
args = parser.parse_args()
ac_method = ac(args)
if "result_file" not in args.__dict__:
args.result_file = 'one_epochs_debug_badnet_attack'
elif args.result_file is None:
args.result_file = 'one_epochs_debug_badnet_attack'
result = ac_method.defense(args.result_file)
.. Note::
@article{chen2018detecting,
title={Detecting backdoor attacks on deep neural networks by activation clustering},
author={Chen, Bryant and Carvalho, Wilka and Baracaldo, Nathalie and Ludwig, Heiko and Edwards, Benjamin and Lee, Taesung and Molloy, Ian and Srivastava, Biplav},
journal={arXiv preprint arXiv:1811.03728},
year={2018}
}
Args:
baisc args: in the base class
nb_dims (int): number of dimensions to reduce activation to by PCA.
nb_clusters (int): number of clusters (defaults to 2 for poison/clean).
cluster_analysis (str): the method of cluster analysis (smaller, relative-size, distance, silhouette-scores)
cluster_batch_size (int): the batch size of cluster analysis
"""
def __init__(self,args):
with open(args.yaml_path, 'r') as f:
defaults = yaml.safe_load(f)
defaults.update({k:v for k,v in args.__dict__.items() if v is not None})
args.__dict__ = defaults
args.terminal_info = sys.argv
args.num_classes = get_num_classes(args.dataset)
args.input_height, args.input_width, args.input_channel = get_input_shape(args.dataset)
args.img_size = (args.input_height, args.input_width, args.input_channel)
args.dataset_path = f"{args.dataset_path}/{args.dataset}"
self.args = args
if 'result_file' in args.__dict__ :
if args.result_file is not None:
self.set_result(args.result_file)
def add_arguments(parser):
parser.add_argument('--device', type=str, help='cuda, cpu')
parser.add_argument("-pm","--pin_memory", type=lambda x: str(x) in ['True', 'true', '1'], help = "dataloader pin_memory")
parser.add_argument("-nb","--non_blocking", type=lambda x: str(x) in ['True', 'true', '1'], help = ".to(), set the non_blocking = ?")
parser.add_argument("-pf", '--prefetch', type=lambda x: str(x) in ['True', 'true', '1'], help='use prefetch')
parser.add_argument('--amp', default = False, type=lambda x: str(x) in ['True','true','1'])
parser.add_argument('--checkpoint_load', type=str, help='the location of load model')
parser.add_argument('--checkpoint_save', type=str, help='the location of checkpoint where model is saved')
parser.add_argument('--log', type=str, help='the location of log')
parser.add_argument("--dataset_path", type=str, help='the location of data')
parser.add_argument('--dataset', type=str, help='mnist, cifar10, cifar100, gtrsb, tiny')
parser.add_argument('--result_file', type=str, help='the location of result')
parser.add_argument('--epochs', type=int)
parser.add_argument('--batch_size', type=int)
parser.add_argument("--num_workers", type=float)
parser.add_argument('--lr', type=float)
parser.add_argument('--lr_scheduler', type=str, help='the scheduler of lr')
parser.add_argument('--steplr_stepsize', type=int)
parser.add_argument('--steplr_gamma', type=float)
parser.add_argument('--steplr_milestones', type=list)
parser.add_argument('--model', type=str, help='resnet18')
parser.add_argument('--client_optimizer', type=int)
parser.add_argument('--sgd_momentum', type=float)
parser.add_argument('--wd', type=float, help='weight decay of sgd')
parser.add_argument('--frequency_save', type=int,
help=' frequency_save, 0 is never')
parser.add_argument('--random_seed', type=int, help='random seed')
parser.add_argument('--yaml_path', type=str, default="./config/defense/ac/config.yaml", help='the path of yaml')
#set the parameter for the ac defense
parser.add_argument('--nb_dims', type=int, help='number of dimensions to reduce activation to')
parser.add_argument('--nb_clusters', type=int, help='number of clusters (defaults to 2 for poison/clean).')
parser.add_argument('--cluster_analysis', type=str, help='the method of cluster analysis')
parser.add_argument('--cluster_batch_size', type=int)
def set_result(self, result_file):
attack_file = 'record/' + result_file
save_path = 'record/' + result_file + '/defense/ac/'
if not (os.path.exists(save_path)):
os.makedirs(save_path)
# assert(os.path.exists(save_path))
self.args.save_path = save_path
if self.args.checkpoint_save is None:
self.args.checkpoint_save = save_path + 'checkpoint/'
if not (os.path.exists(self.args.checkpoint_save)):
os.makedirs(self.args.checkpoint_save)
if self.args.log is None:
self.args.log = save_path + 'log/'
if not (os.path.exists(self.args.log)):
os.makedirs(self.args.log)
self.result = load_attack_result(attack_file + '/attack_result.pt')
def set_trainer(self, model):
self.trainer = PureCleanModelTrainer(
model = model,
)
def set_logger(self):
args = self.args
logFormatter = logging.Formatter(
fmt='%(asctime)s [%(levelname)-8s] [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d:%H:%M:%S',
)
logger = logging.getLogger()
fileHandler = logging.FileHandler(args.log + '/' + time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime()) + '.log')
fileHandler.setFormatter(logFormatter)
logger.addHandler(fileHandler)
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(logFormatter)
logger.addHandler(consoleHandler)
logger.setLevel(logging.INFO)
logging.info(pformat(args.__dict__))
try:
logging.info(pformat(get_git_info()))
except:
logging.info('Getting git info fails.')
def set_devices(self):
# self.device = torch.device(
# (
# f"cuda:{[int(i) for i in self.args.device[5:].split(',')][0]}" if "," in self.args.device else self.args.device
# # since DataParallel only allow .to("cuda")
# ) if torch.cuda.is_available() else "cpu"
# )
self.device = self.args.device
def mitigation(self):
self.set_devices()
fix_random(self.args.random_seed)
### a. classify data by activation results
model = generate_cls_model(self.args.model,self.args.num_classes)
model.load_state_dict(self.result['model'])
if "," in self.device:
model = torch.nn.DataParallel(
model,
device_ids=[int(i) for i in self.args.device[5:].split(",")] # eg. "cuda:2,3,7" -> [2,3,7]
)
self.args.device = f'cuda:{model.device_ids[0]}'
model.to(self.args.device)
else:
model.to(self.args.device)
train_tran = get_transform(self.args.dataset, *([self.args.input_height,self.args.input_width]) , train = True)
train_dataset = self.result['bd_train'].wrapped_dataset
data_set_without_tran = train_dataset
data_set_o = self.result['bd_train']
data_set_o.wrapped_dataset = data_set_without_tran
data_set_o.wrap_img_transform = train_tran
data_set_o.wrapped_dataset.getitem_all = False
if not 'cluster_batch_size' in self.args.__dict__:
self.args.cluster_batch_size = self.args.batch_size
data_loader = torch.utils.data.DataLoader(data_set_o, batch_size=self.args.cluster_batch_size, num_workers=self.args.num_workers, shuffle=True)
num_classes = self.args.num_classes
for i, (x_batch,y_batch) in enumerate(data_loader): # type: ignore
x_batch = x_batch.to(self.args.device)
y_batch = y_batch.to(self.args.device)
batch_activations = get_activations(self.result['model_name'],model,x_batch.to(self.args.device))
activation_dim = batch_activations.shape[-1]
# initialize values list of lists on first run
if i == 0:
activations_by_class = [np.empty((0, activation_dim)) for _ in range(num_classes)]
clusters_by_class = [np.empty(0, dtype=int) for _ in range(num_classes)]
red_activations_by_class = [np.empty((0, self.args.nb_dims)) for _ in range(num_classes)]
activations_by_class_i = segment_by_class(batch_activations, y_batch,self.args.num_classes)
clusters_by_class_i, red_activations_by_class_i = cluster_activations(
activations_by_class_i,
nb_clusters=self.args.nb_clusters,
nb_dims=self.args.nb_dims,
reduce='PCA',
clustering_method='KMeans'
)
for class_idx in range(num_classes):
if activations_by_class_i[class_idx].shape[0] != 0:
activations_by_class[class_idx] = np.vstack(
[activations_by_class[class_idx], activations_by_class_i[class_idx]]
)
clusters_by_class[class_idx] = np.append(
clusters_by_class[class_idx], [clusters_by_class_i[class_idx]]
)
red_activations_by_class[class_idx] = np.vstack(
[red_activations_by_class[class_idx], red_activations_by_class_i[class_idx]]
)
### b. identify backdoor data according to classification results
analyzer = ClusteringAnalyzer()
if self.args.cluster_analysis == "smaller":
(
assigned_clean_by_class,
poisonous_clusters,
report,
) = analyzer.analyze_by_size(clusters_by_class)
elif self.args.cluster_analysis == "relative-size":
(
assigned_clean_by_class,
poisonous_clusters,
report,
) = analyzer.analyze_by_relative_size(clusters_by_class)
elif self.args.cluster_analysis == "distance":
(assigned_clean_by_class, poisonous_clusters, report,) = analyzer.analyze_by_distance(
clusters_by_class,
separated_activations=red_activations_by_class,
)
elif self.args.cluster_analysis == "silhouette-scores":
(assigned_clean_by_class, poisonous_clusters, report,) = analyzer.analyze_by_silhouette_score(
clusters_by_class,
reduced_activations_by_class=red_activations_by_class,
)
else:
raise ValueError("Unsupported cluster analysis technique " + self.args.cluster_analysis)
batch_size = self.args.cluster_batch_size
is_clean_lst = []
# loop though the generator to generator a report
last_loc = torch.zeros(self.args.num_classes).numpy().astype(int)
for i, (x_batch,y_batch) in enumerate(data_loader): # type: ignore
indices_by_class = segment_by_class(np.arange(batch_size), y_batch,self.args.num_classes)
is_clean_lst_i = [0] * batch_size
clean_class = [0] * batch_size
for class_idx, idxs in enumerate(indices_by_class):
for idx_in_class, idx in enumerate(idxs):
is_clean_lst_i[idx] = assigned_clean_by_class[class_idx][idx_in_class + last_loc[class_idx]]
last_loc[class_idx] = last_loc[class_idx] + len(idxs)
is_clean_lst += is_clean_lst_i
### c. retrain the model with filtered data
model = generate_cls_model(self.args.model,self.args.num_classes)
if "," in self.device:
model = torch.nn.DataParallel(
model,
device_ids=[int(i) for i in self.args.device[5:].split(",")] # eg. "cuda:2,3,7" -> [2,3,7]
)
self.args.device = f'cuda:{model.device_ids[0]}'
model.to(self.args.device)
else:
model.to(self.args.device)
data_set_o.subset([i for i,v in enumerate(is_clean_lst) if v==1])
data_set_o.wrapped_dataset.getitem_all = True
data_loader_sie = torch.utils.data.DataLoader(data_set_o, batch_size=self.args.batch_size, num_workers=self.args.num_workers, shuffle=True, drop_last=True)
# optimizer, scheduler = argparser_opt_scheduler(model, self.args)
# criterion = nn.CrossEntropyLoss()
# self.set_trainer(model)
optimizer, scheduler = argparser_opt_scheduler(model, self.args)
# criterion = nn.CrossEntropyLoss()
self.set_trainer(model)
criterion = argparser_criterion(args)
# test_tran = get_transform(self.args.dataset, *([self.args.input_height,self.args.input_width]) , train = False)
# x = self.result['bd_test']['x']
# y = self.result['bd_test']['y']
# data_bd_test = list(zip(x,y))
# data_bd_testset = prepro_cls_DatasetBD(
# full_dataset_without_transform=data_bd_test,
# poison_idx=np.zeros(len(data_bd_test)), # one-hot to determine which image may take bd_transform
# bd_image_pre_transform=None,
# bd_label_pre_transform=None,
# ori_image_transform_in_loading=test_tran,
# ori_label_transform_in_loading=None,
# add_details_in_preprocess=False,
# )
# data_bd_loader = torch.utils.data.DataLoader(data_bd_testset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,drop_last=False, shuffle=True,pin_memory=True)
# x = self.result['clean_test']['x']
# y = self.result['clean_test']['y']
# data_clean_test = list(zip(x,y))
# data_clean_testset = prepro_cls_DatasetBD(
# full_dataset_without_transform=data_clean_test,
# poison_idx=np.zeros(len(data_clean_test)), # one-hot to determine which image may take bd_transform
# bd_image_pre_transform=None,
# bd_label_pre_transform=None,
# ori_image_transform_in_loading=test_tran,
# ori_label_transform_in_loading=None,
# add_details_in_preprocess=False,
# )
# data_clean_loader = torch.utils.data.DataLoader(data_clean_testset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,drop_last=False, shuffle=True,pin_memory=True)
test_tran = get_transform(self.args.dataset, *([self.args.input_height,self.args.input_width]) , train = False)
data_bd_testset = self.result['bd_test']
data_bd_testset.wrap_img_transform = test_tran
data_bd_loader = torch.utils.data.DataLoader(data_bd_testset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,drop_last=False, shuffle=True,pin_memory=args.pin_memory)
data_clean_testset = self.result['clean_test']
data_clean_testset.wrap_img_transform = test_tran
data_clean_loader = torch.utils.data.DataLoader(data_clean_testset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,drop_last=False, shuffle=True,pin_memory=args.pin_memory)
self.trainer.train_with_test_each_epoch_on_mix(
data_loader_sie,
data_clean_loader,
data_bd_loader,
args.epochs,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
device=self.args.device,
frequency_save=args.frequency_save,
save_folder_path=args.save_path,
save_prefix='ac',
amp=args.amp,
prefetch=args.prefetch,
prefetch_transform_attr_name="ori_image_transform_in_loading", # since we use the preprocess_bd_dataset
non_blocking=args.non_blocking,
)
# self.trainer.train_with_test_each_epoch(
# train_data = data_loader_sie,
# test_data = data_clean_loader,
# adv_test_data = data_bd_loader,
# end_epoch_num = self.args.epochs,
# criterion = criterion,
# optimizer = optimizer,
# scheduler = scheduler,
# device = self.args.device,
# frequency_save = self.args.frequency_save,
# save_folder_path = self.args.checkpoint_save,
# save_prefix = 'defense',
# continue_training_path = None,
# )
# model.to(self.args.device)
result = {}
result['model'] = model
result['dataset'] = data_set_o
save_defense_result(
model_name=args.model,
num_classes=args.num_classes,
model=model.cpu().state_dict(),
save_path=args.save_path,
)
return result
def defense(self,result_file):
self.set_result(result_file)
self.set_logger()
result = self.mitigation()
return result
def segment_by_class(data , classes: np.ndarray, num_classes: int) -> List[np.ndarray]:
try:
width = data.size()[1]
by_class: List[List[int]] = [[] for _ in range(num_classes)]
for indx, feature in enumerate(classes):
if len(classes.shape) == 2 and classes.shape[1] > 1:
assigned = np.argmax(feature)
else:
assigned = int(feature)
if torch.is_tensor(data[indx]):
by_class[assigned].append(data[indx].cpu().numpy())
else:
by_class[assigned].append(data[indx])
return [np.asarray(i).reshape(-1,width) for i in by_class]
except :
by_class: List[List[int]] = [[] for _ in range(num_classes)]
for indx, feature in enumerate(classes):
if len(classes.shape) == 2 and classes.shape[1] > 1:
assigned = np.argmax(feature)
else:
assigned = int(feature)
if torch.is_tensor(data[indx]):
by_class[assigned].append(data[indx].cpu().numpy())
else:
by_class[assigned].append(data[indx])
return [np.asarray(i) for i in by_class]
def measure_misclassification(
classifier, x_test: np.ndarray, y_test: np.ndarray
) -> float:
"""
Computes 1-accuracy given x_test and y_test
:param classifier: Classifier to be used for predictions.
:param x_test: Test set.
:param y_test: Labels for test set.
:return: 1-accuracy.
"""
predictions = np.argmax(classifier.predict(x_test), axis=1)
return 1.0 - np.sum(predictions == np.argmax(y_test, axis=1)) / y_test.shape[0]
def train_remove_backdoor(
classifier,
x_train: np.ndarray,
y_train: np.ndarray,
x_test: np.ndarray,
y_test: np.ndarray,
tolerable_backdoor: float,
max_epochs: int,
batch_epochs: int,
) -> tuple:
"""
Trains the provider classifier until the tolerance or number of maximum epochs are reached.
:param classifier: Classifier to be used for predictions.
:param x_train: Training set.
:param y_train: Labels used for training.
:param x_test: Samples in test set.
:param y_test: Labels in test set.
:param tolerable_backdoor: Parameter that determines how many misclassifications are acceptable.
:param max_epochs: maximum number of epochs to be run.
:param batch_epochs: groups of epochs that will be run together before checking for termination.
:return: (improve_factor, classifier).
"""
# Measure poison success in current model:
initial_missed = measure_misclassification(classifier, x_test, y_test)
curr_epochs = 0
curr_missed = 1.0
while curr_epochs < max_epochs and curr_missed > tolerable_backdoor:
classifier.fit(x_train, y_train, nb_epochs=batch_epochs)
curr_epochs += batch_epochs
curr_missed = measure_misclassification(classifier, x_test, y_test)
improve_factor = initial_missed - curr_missed
return improve_factor, classifier
def cluster_activations(
separated_activations: List[np.ndarray],
nb_clusters: int = 2,
nb_dims: int = 10,
reduce: str = "FastICA",
clustering_method: str = "KMeans",
generator = None,
clusterer_new = None,
) -> Tuple[List[np.ndarray], List[np.ndarray]]:
"""
Clusters activations and returns two arrays.
1) separated_clusters: where separated_clusters[i] is a 1D array indicating which cluster each data point
in the class has been assigned.
2) separated_reduced_activations: activations with dimensionality reduced using the specified reduce method.
:param separated_activations: List where separated_activations[i] is a np matrix for the ith class where
each row corresponds to activations for a given data point.
:param nb_clusters: number of clusters (defaults to 2 for poison/clean).
:param nb_dims: number of dimensions to reduce activation to via PCA.
:param reduce: Method to perform dimensionality reduction, default is FastICA.
:param clustering_method: Clustering method to use, default is KMeans.
:param generator: whether or not a the activations are a batch or full activations
:return: (separated_clusters, separated_reduced_activations).
:param clusterer_new: whether or not a the activations are a batch or full activations
:return: (separated_clusters, separated_reduced_activations)
"""
separated_clusters = []
separated_reduced_activations = []
if clustering_method == "KMeans":
clusterer = KMeans(n_clusters=nb_clusters)
else:
raise ValueError(clustering_method + " clustering method not supported.")
for activation in separated_activations:
# Apply dimensionality reduction
try :
nb_activations = np.shape(activation)[1]
except IndexError:
activation = activation.reshape(1,-1)
nb_activations = np.shape(activation)[1]
if nb_activations > nb_dims & np.shape(activation)[0] > nb_dims:
# TODO: address issue where if fewer samples than nb_dims this fails
reduced_activations = reduce_dimensionality(activation, nb_dims=nb_dims, reduce=reduce)
elif nb_activations <= nb_dims:
reduced_activations = activation
else:
reduced_activations = activation[:,0:(nb_dims)]
separated_reduced_activations.append(reduced_activations)
# Get cluster assignments
if generator is not None and clusterer_new is not None and reduced_activations.shape[0] != 0:
clusterer_new = clusterer_new.partial_fit(reduced_activations)
# NOTE: this may cause earlier predictions to be less accurate
clusters = clusterer_new.predict(reduced_activations)
elif reduced_activations.shape[0] != 1 and reduced_activations.shape[0] != 0:
clusters = clusterer.fit_predict(reduced_activations)
else:
clusters = 1
separated_clusters.append(clusters)
return separated_clusters, separated_reduced_activations
def reduce_dimensionality(activations: np.ndarray, nb_dims: int = 10, reduce: str = "FastICA") -> np.ndarray:
"""
Reduces dimensionality of the activations provided using the specified number of dimensions and reduction technique.
:param activations: Activations to be reduced.
:param nb_dims: number of dimensions to reduce activation to via PCA.
:param reduce: Method to perform dimensionality reduction, default is FastICA.
:return: Array with the reduced activations.
"""
# pylint: disable=E0001
from sklearn.decomposition import FastICA, PCA
if reduce == "FastICA":
projector = FastICA(n_components=nb_dims, max_iter=1000, tol=0.005)
elif reduce == "PCA":
projector = PCA(n_components=nb_dims)
else:
raise ValueError(reduce + " dimensionality reduction method not supported.")
reduced_activations = projector.fit_transform(activations)
return reduced_activations
def get_activations(name,model,x_batch):
''' get activations of the model for each sample
name:
the model name
model:
the train model
x_batch:
each batch for tain data
'''
with torch.no_grad():
model.eval()
TOO_SMALL_ACTIVATIONS = 32
assert name in ['preactresnet18', 'vgg19','vgg19_bn', 'resnet18', 'mobilenet_v3_large', 'densenet161', 'efficientnet_b3','convnext_tiny','vit_b_16']
if name == 'preactresnet18':
inps,outs = [],[]
def layer_hook(module, inp, out):
outs.append(out.data)
hook = model.avgpool.register_forward_hook(layer_hook)
_ = model(x_batch)
activations = outs[0].view(outs[0].size(0), -1)
hook.remove()
elif name == 'vgg19':
inps,outs = [],[]
def layer_hook(module, inp, out):
outs.append(out.data)
hook = model.features.register_forward_hook(layer_hook)
_ = model(x_batch)
activations = outs[0].view(outs[0].size(0), -1)
hook.remove()
elif name == 'vgg19_bn':
inps,outs = [],[]
def layer_hook(module, inp, out):
outs.append(out.data)
hook = model.features.register_forward_hook(layer_hook)
_ = model(x_batch)
activations = outs[0].view(outs[0].size(0), -1)
hook.remove()
elif name == 'resnet18':
inps,outs = [],[]
def layer_hook(module, inp, out):
outs.append(out.data)
hook = model.layer4.register_forward_hook(layer_hook)
_ = model(x_batch)
activations = outs[0].view(outs[0].size(0), -1)
hook.remove()
elif name == 'mobilenet_v3_large':
inps,outs = [],[]
def layer_hook(module, inp, out):
outs.append(out.data)
hook = model.avgpool.register_forward_hook(layer_hook)
_ = model(x_batch)
activations = outs[0].view(outs[0].size(0), -1)
hook.remove()
elif name == 'densenet161':
inps,outs = [],[]
def layer_hook(module, inp, out):
outs.append(out.data)
hook = model.features.register_forward_hook(layer_hook)
_ = model(x_batch)
outs[0] = torch.nn.functional.relu(outs[0])
activations = outs[0].view(outs[0].size(0), -1)
hook.remove()
elif name == 'efficientnet_b3':
inps,outs = [],[]
def layer_hook(module, inp, out):
outs.append(out.data)
hook = model.avgpool.register_forward_hook(layer_hook)
_ = model(x_batch)
activations = outs[0].view(outs[0].size(0), -1)
hook.remove()
elif name == 'convnext_tiny':
inps,outs = [],[]
def layer_hook(module, inp, out):
outs.append(out.data)
hook = model.avgpool.register_forward_hook(layer_hook)
_ = model(x_batch)
activations = outs[0].view(outs[0].size(0), -1)
hook.remove()
elif name == 'vit_b_16':
inps,outs = [],[]
def layer_hook(module, inp, out):
inps.append(inp[0].data)
hook = model[1].heads.register_forward_hook(layer_hook)
_ = model(x_batch)
activations = inps[0].view(inps[0].size(0), -1)
hook.remove()
return activations
# MIT License
#
# Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2018
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
# persons to whom the Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
This module implements methodologies to analyze clusters and determine whether they are poisonous.
"""
class ClusteringAnalyzer:
"""
Class for all methodologies implemented to analyze clusters and determine whether they are poisonous.
"""
@staticmethod
def assign_class(clusters: np.ndarray, clean_clusters: List[int], poison_clusters: List[int]) -> np.ndarray:
"""
Determines whether each data point in the class is in a clean or poisonous cluster
:param clusters: `clusters[i]` indicates which cluster the i'th data point is in.
:param clean_clusters: List containing the clusters designated as clean.
:param poison_clusters: List containing the clusters designated as poisonous.
:return: assigned_clean: `assigned_clean[i]` is a boolean indicating whether the ith data point is clean.
"""
assigned_clean = np.empty(np.shape(clusters))
assigned_clean[np.isin(clusters, clean_clusters)] = 1
assigned_clean[np.isin(clusters, poison_clusters)] = 0
return assigned_clean
def analyze_by_size(
self, separated_clusters: List[np.ndarray]
) -> Tuple[np.ndarray, List[List[int]], Dict[str, int]]:
"""
Designates as poisonous the cluster with less number of items on it.
:param separated_clusters: list where separated_clusters[i] is the cluster assignments for the ith class.
:return: all_assigned_clean, summary_poison_clusters, report:
where all_assigned_clean[i] is a 1D boolean array indicating whether
a given data point was determined to be clean (as opposed to poisonous) and
summary_poison_clusters: array, where summary_poison_clusters[i][j]=1 if cluster j of class i was
classified as poison, otherwise 0
report: Dictionary with summary of the analysis
"""
report: Dict[str, Any] = {
"cluster_analysis": "smaller",
"suspicious_clusters": 0,
}
all_assigned_clean = []
nb_classes = len(separated_clusters)
nb_clusters = len(np.unique(separated_clusters[0]))
summary_poison_clusters: List[List[int]] = [[0 for _ in range(nb_clusters)] for _ in range(nb_classes)]
for i, clusters in enumerate(separated_clusters):
# assume that smallest cluster is poisonous and all others are clean
sizes = np.bincount(clusters)
total_dp_in_class = np.sum(sizes)
poison_clusters: List[int] = [int(np.argmin(sizes))]
clean_clusters = list(set(clusters) - set(poison_clusters))
for p_id in poison_clusters:
summary_poison_clusters[i][p_id] = 1
for c_id in clean_clusters:
summary_poison_clusters[i][c_id] = 0
assigned_clean = self.assign_class(clusters, clean_clusters, poison_clusters)
all_assigned_clean.append(assigned_clean)
# Generate report for this class:
report_class = dict()
for cluster_id in range(nb_clusters):
ptc = sizes[cluster_id] / total_dp_in_class
susp = cluster_id in poison_clusters
dict_i = dict(ptc_data_in_cluster=round(ptc, 2), suspicious_cluster=susp)
dict_cluster: Dict[str, Dict[str, int]] = {"cluster_" + str(cluster_id): dict_i}
report_class.update(dict_cluster)
report["Class_" + str(i)] = report_class
report["suspicious_clusters"] = report["suspicious_clusters"] + np.sum(summary_poison_clusters).item()
return np.asarray(all_assigned_clean), summary_poison_clusters, report
def analyze_by_distance(
self,
separated_clusters: List[np.ndarray],
separated_activations: List[np.ndarray],
) -> Tuple[np.ndarray, List[List[int]], Dict[str, int]]:
"""
Assigns a cluster as poisonous if its median activation is closer to the median activation for another class
than it is to the median activation of its own class. Currently, this function assumes there are only two
clusters per class.
:param separated_clusters: list where separated_clusters[i] is the cluster assignments for the ith class.
:param separated_activations: list where separated_activations[i] is a 1D array of [0,1] for [poison,clean].
:return: all_assigned_clean, summary_poison_clusters, report:
where all_assigned_clean[i] is a 1D boolean array indicating whether a given data point was determined
to be clean (as opposed to poisonous) and summary_poison_clusters: array, where
summary_poison_clusters[i][j]=1 if cluster j of class i was classified as poison, otherwise 0
report: Dictionary with summary of the analysis.
"""
report: Dict[str, Any] = {"cluster_analysis": 0.0}
all_assigned_clean = []
cluster_centers = []
nb_classes = len(separated_clusters)
nb_clusters = len(np.unique(separated_clusters[0]))
summary_poison_clusters: List[List[int]] = [[0 for _ in range(nb_clusters)] for _ in range(nb_classes)]
# assign centers
for _, activations in enumerate(separated_activations):
cluster_centers.append(np.median(activations, axis=0))
for i, (clusters, activation) in enumerate(zip(separated_clusters, separated_activations)):
clusters = np.array(clusters)
cluster0_center = np.median(activation[np.where(clusters == 0)], axis=0)
cluster1_center = np.median(activation[np.where(clusters == 1)], axis=0)
cluster0_distance = np.linalg.norm(cluster0_center - cluster_centers[i])
cluster1_distance = np.linalg.norm(cluster1_center - cluster_centers[i])
cluster0_is_poison = False
cluster1_is_poison = False
dict_k = dict()
dict_cluster_0 = dict(cluster0_distance_to_its_class=str(cluster0_distance))
dict_cluster_1 = dict(cluster1_distance_to_its_class=str(cluster1_distance))
for k, center in enumerate(cluster_centers):
if k == i:
pass
else:
cluster0_distance_to_k = np.linalg.norm(cluster0_center - center)
cluster1_distance_to_k = np.linalg.norm(cluster1_center - center)
if cluster0_distance_to_k < cluster0_distance and cluster1_distance_to_k > cluster1_distance:
cluster0_is_poison = True
if cluster1_distance_to_k < cluster1_distance and cluster0_distance_to_k > cluster0_distance:
cluster1_is_poison = True
dict_cluster_0["distance_to_class_" + str(k)] = str(cluster0_distance_to_k)
dict_cluster_0["suspicious"] = str(cluster0_is_poison)
dict_cluster_1["distance_to_class_" + str(k)] = str(cluster1_distance_to_k)
dict_cluster_1["suspicious"] = str(cluster1_is_poison)
dict_k.update(dict_cluster_0)
dict_k.update(dict_cluster_1)
report_class = dict(cluster_0=dict_cluster_0, cluster_1=dict_cluster_1)
report["Class_" + str(i)] = report_class
poison_clusters = []
if cluster0_is_poison:
poison_clusters.append(0)
summary_poison_clusters[i][0] = 1
else:
summary_poison_clusters[i][0] = 0
if cluster1_is_poison:
poison_clusters.append(1)
summary_poison_clusters[i][1] = 1
else:
summary_poison_clusters[i][1] = 0
clean_clusters = list(set(clusters) - set(poison_clusters))
assigned_clean = self.assign_class(clusters, clean_clusters, poison_clusters)
all_assigned_clean.append(assigned_clean)
all_assigned_clean = np.asarray(all_assigned_clean)
return all_assigned_clean, summary_poison_clusters, report
def analyze_by_relative_size(
self,
separated_clusters: List[np.ndarray],
size_threshold: float = 0.35,
r_size: int = 2,
) -> Tuple[np.ndarray, List[List[int]], Dict[str, int]]:
"""
Assigns a cluster as poisonous if the smaller one contains less than threshold of the data.
This method assumes only 2 clusters
:param separated_clusters: List where `separated_clusters[i]` is the cluster assignments for the ith class.
:param size_threshold: Threshold used to define when a cluster is substantially smaller.
:param r_size: Round number used for size rate comparisons.
:return: all_assigned_clean, summary_poison_clusters, report:
where all_assigned_clean[i] is a 1D boolean array indicating whether a given data point was determined
to be clean (as opposed to poisonous) and summary_poison_clusters: array, where
summary_poison_clusters[i][j]=1 if cluster j of class i was classified as poison, otherwise 0
report: Dictionary with summary of the analysis.
"""
size_threshold = round(size_threshold, r_size)
report: Dict[str, Any] = {
"cluster_analysis": "relative_size",
"suspicious_clusters": 0,
"size_threshold": size_threshold,
}
all_assigned_clean = []
nb_classes = len(separated_clusters)
nb_clusters = len(np.unique(separated_clusters[0]))
summary_poison_clusters: List[List[int]] = [[0 for _ in range(nb_clusters)] for _ in range(nb_classes)]
for i, clusters in enumerate(separated_clusters):
sizes = np.bincount(clusters)
total_dp_in_class = np.sum(sizes)
if np.size(sizes) > 2:
raise ValueError(" RelativeSizeAnalyzer does not support more than two clusters.")
percentages = np.round(sizes / float(np.sum(sizes)), r_size)
poison_clusters = np.where(percentages < size_threshold)
clean_clusters = np.where(percentages >= size_threshold)
for p_id in poison_clusters[0]:
summary_poison_clusters[i][p_id] = 1
for c_id in clean_clusters[0]:
summary_poison_clusters[i][c_id] = 0
assigned_clean = self.assign_class(clusters, clean_clusters, poison_clusters)
all_assigned_clean.append(assigned_clean)
# Generate report for this class:
report_class = dict()
for cluster_id in range(nb_clusters):
ptc = sizes[cluster_id] / total_dp_in_class
susp = cluster_id in poison_clusters
dict_i = dict(ptc_data_in_cluster=round(ptc, 2), suspicious_cluster=susp)
dict_cluster = {"cluster_" + str(cluster_id): dict_i}
report_class.update(dict_cluster)
report["Class_" + str(i)] = report_class
report["suspicious_clusters"] = report["suspicious_clusters"] + np.sum(summary_poison_clusters).item()
return np.asarray(all_assigned_clean), summary_poison_clusters, report
def analyze_by_silhouette_score(
self,
separated_clusters: list,
reduced_activations_by_class: list,
size_threshold: float = 0.35,
silhouette_threshold: float = 0.1,
r_size: int = 2,
r_silhouette: int = 4,
) -> Tuple[np.ndarray, List[List[int]], Dict[str, int]]:
"""
Analyzes clusters to determine level of suspiciousness of poison based on the cluster's relative size
and silhouette score.
Computes a silhouette score for each class to determine how cohesive resulting clusters are.
A low silhouette score indicates that the clustering does not fit the data well, and the class can be considered
to be un-poisoned. Conversely, a high silhouette score indicates that the clusters reflect true splits in the
data.
The method concludes that a cluster is poison based on the silhouette score and the cluster relative size.
If the relative size is too small, below a size_threshold and at the same time
the silhouette score is higher than silhouette_threshold, the cluster is classified as poisonous.
If the above thresholds are not provided, the default ones will be used.
:param separated_clusters: list where `separated_clusters[i]` is the cluster assignments for the ith class.
:param reduced_activations_by_class: list where separated_activations[i] is a 1D array of [0,1] for
[poison,clean].
:param size_threshold: (optional) threshold used to define when a cluster is substantially smaller. A default
value is used if the parameter is not provided.
:param silhouette_threshold: (optional) threshold used to define when a cluster is cohesive. Default
value is used if the parameter is not provided.
:param r_size: Round number used for size rate comparisons.
:param r_silhouette: Round number used for silhouette rate comparisons.
:return: all_assigned_clean, summary_poison_clusters, report:
where all_assigned_clean[i] is a 1D boolean array indicating whether a given data point was determined
to be clean (as opposed to poisonous) summary_poison_clusters: array, where
summary_poison_clusters[i][j]=1 if cluster j of class j was classified as poison