-
Notifications
You must be signed in to change notification settings - Fork 70
/
dbd.py
1375 lines (1147 loc) · 66.5 KB
/
dbd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
Backdoor Defense Via Decoupling The Training Process
This file is modified based on the following source:
link : https://github.com/SCLBD/DBD
@inproceedings{huang2021backdoor,
title={Backdoor Defense via Decoupling the Training Process},
author={Huang, Kunzhe and Li, Yiming and Wu, Baoyuan and Qin, Zhan and Ren, Kui},
booktitle={International Conference on Learning Representations},
year={2021}
}
The defense method is called dbd.
The license is bellow the code
The update include:
1. data preprocess and dataset setting
2. model setting
3. args and config
4. save process
5. new standard: robust accuracy
6. add some new backdone such as mobilenet efficientnet and densenet, reconstruct the backbone of vgg and preactresnet
7. Different data augmentation (transform) methods are used
8. rewrite the dateset
basic sturcture for defense method:
1. basic setting: args
2. attack result(model, train data, test data)
3. dbd defense:
a. self-supervised learning generates feature extractor
b. learning model using extracted features
c. the samples with poor confidence were excluded, and semi-supervised learning was used to continue the learning model
4. test the result and get ASR, ACC, RA
'''
import logging
import time
import argparse
import shutil
import sys
import os
sys.path.append('../')
sys.path.append(os.getcwd())
from utils.defense_utils.dbd.data.prefetch import PrefetchLoader
from defense.base import defense
from utils.log_assist import get_git_info
import numpy as np
import torch
import yaml
from utils.trainer_cls import Metric_Aggregator, general_plot_for_epoch
from pprint import pformat
from utils.aggregate_block.dataset_and_transform_generate import get_input_shape, get_num_classes, get_transform, get_transform_prefetch
from utils.defense_utils.dbd.data.utils import (
get_loader,
get_semi_idx,
)
from utils.defense_utils.dbd.data.dataset import PoisonLabelDataset, SelfPoisonDataset, MixMatchDataset
from utils.aggregate_block.fix_random import fix_random
from utils.save_load_attack import load_attack_result, save_defense_result
# from utils_db.box import get_information
from utils.defense_utils.dbd.model.model import SelfModel, LinearModel
from utils.defense_utils.dbd.model.utils import (
get_network_dbd,
load_state,
get_criterion,
get_optimizer,
get_scheduler,
)
from utils.bd_dataset_v2 import xy_iter, slice_iter
from utils.defense_utils.dbd.utils_db.setup import (
load_config,
)
from utils.defense_utils.dbd.utils_db.trainer.log import result2csv
from utils.defense_utils.dbd.utils_db.trainer.simclr import simclr_train
from utils.defense_utils.dbd.utils_db.trainer.semi import mixmatch_train
from utils.defense_utils.dbd.utils_db.trainer.simclr import linear_test, poison_linear_record, poison_linear_train
from utils.aggregate_block.dataset_and_transform_generate import get_transform_self
def get_information(args,result,config_ori):
config = config_ori
aug_transform = get_transform_self(args.dataset, *([args.input_height,args.input_width]) , train = True, prefetch =args.prefetch)
x = slice_iter(result["bd_train"], axis=0)
y = slice_iter(result["bd_train"], axis=1)
self_poison_train_data = SelfPoisonDataset(x,y, aug_transform,args)
self_poison_train_loader_ori = torch.utils.data.DataLoader(self_poison_train_data, batch_size=args.batch_size_self, num_workers=args.num_workers,drop_last=False, shuffle=True,pin_memory=True)
if args.prefetch:
# x,y: PIL.Image.Image -> SelfPoisonDataset: Tensor with trans, no normalization [0,255]-> PrefetchLoader: Tensor with trans [0,1], with normalization
self_poison_train_loader = PrefetchLoader(self_poison_train_loader_ori, self_poison_train_data.mean, self_poison_train_data.std)
else:
# x,y: PIL.Image.Image, [0,255] -> SelfPoisonDataset: Tensor with trans [0,1] with normalization
self_poison_train_loader = self_poison_train_loader_ori
backbone = get_network_dbd(args)
self_model = SelfModel(backbone)
self_model = self_model.to(args.device)
criterion = get_criterion(config["criterion"])
criterion = criterion.to(args.device)
optimizer = get_optimizer(self_model, config["optimizer"])
scheduler = get_scheduler(optimizer, config["lr_scheduler"])
resumed_epoch = load_state(
self_model, args.resume, args.checkpoint_load, 0, optimizer, scheduler,
)
box = {
'self_poison_train_loader': self_poison_train_loader,
'self_model': self_model,
'criterion': criterion,
'optimizer': optimizer,
'scheduler': scheduler,
'resumed_epoch': resumed_epoch
}
return box
class dbd(defense):
r"""Backdoor Defense Via Decoupling The Training Process
basic structure:
1. config args, save_path, fix random seed
2. load the backdoor attack data and backdoor test data
3. dbd defense:
a. self-supervised learning generates feature extractor
b. learning model using extracted features
c. the samples with poor confidence were excluded, and semi-supervised learning was used to continue the learning model
4. test the result and get ASR, ACC, RC with regard to the chosen threshold and interval
.. code-block:: python
parser = argparse.ArgumentParser(description=sys.argv[0])
dbd.add_arguments(parser)
args = parser.parse_args()
dbd_method = dbd(args)
if "result_file" not in args.__dict__:
args.result_file = 'one_epochs_debug_badnet_attack'
elif args.result_file is None:
args.result_file = 'one_epochs_debug_badnet_attack'
result = dbd_method.defense(args.result_file)
.. Note::
@article{huang2022backdoor,
title={Backdoor defense via decoupling the training process},
author={Huang, Kunzhe and Li, Yiming and Wu, Baoyuan and Qin, Zhan and Ren, Kui},
journal={arXiv preprint arXiv:2202.03423},
year={2022}
}
Args:
baisc args: in the base class
epoch_self (int): the epoch of warmup during the self-supervised learning
batch_size_self (int): the batch size of self-supervised learning
temperature (float): the temperature in the loss function of self-supervised learning
epsilon (float): the threshold of the presuppossed ratio of the backdoor data to separate the poisoned data in the semi-supervised learning (please be careful to choose the threshold)
epoch_warmup (int): the epoch of warmup during the semi-supervised learning
config_pretrain (str): the path of the config file of the self-supervised learning
config_semi (str): the path of the config file of the semi-supervised learning
"""
def __init__(self,args):
with open(args.yaml_path, 'r') as f:
defaults = yaml.safe_load(f)
defaults.update({k:v for k,v in args.__dict__.items() if v is not None})
args.__dict__ = defaults
args.terminal_info = sys.argv
args.num_classes = get_num_classes(args.dataset)
args.input_height, args.input_width, args.input_channel = get_input_shape(args.dataset)
args.img_size = (args.input_height, args.input_width, args.input_channel)
args.dataset_path = f"{args.dataset_path}/{args.dataset}"
self.args = args
if 'result_file' in args.__dict__ :
if args.result_file is not None:
self.set_result(args.result_file)
def add_arguments(parser):
parser.add_argument('--device', type=str, help='cuda, cpu')
parser.add_argument("-pm","--pin_memory", type=lambda x: str(x) in ['True', 'true', '1'], help = "dataloader pin_memory")
parser.add_argument("-nb","--non_blocking", type=lambda x: str(x) in ['True', 'true', '1'], help = ".to(), set the non_blocking = ?")
parser.add_argument("-pf", '--prefetch', type=lambda x: str(x) in ['True', 'true', '1'], help='use prefetch')
parser.add_argument('--amp', type=lambda x: str(x) in ['True','true','1'])
parser.add_argument('--checkpoint_load', type=str, help='the location of load model')
parser.add_argument('--checkpoint_save', type=str, help='the location of checkpoint where model is saved')
parser.add_argument('--log', type=str, help='the location of log')
parser.add_argument("--dataset_path", type=str, help='the location of data')
parser.add_argument('--dataset', type=str, help='mnist, cifar10, cifar100, gtrsb, tiny')
parser.add_argument('--result_file', type=str, help='the location of result')
parser.add_argument('--epochs', type=int)
parser.add_argument('--batch_size', type=int)
parser.add_argument("--num_workers", type=float)
parser.add_argument('--lr', type=float)
parser.add_argument('--lr_scheduler', type=str, help='the scheduler of lr')
parser.add_argument('--steplr_stepsize', type=int)
parser.add_argument('--steplr_gamma', type=float)
parser.add_argument('--steplr_milestones', type=list)
parser.add_argument('--model', type=str, help='resnet18')
parser.add_argument('--client_optimizer', type=int)
parser.add_argument('--sgd_momentum', type=float)
parser.add_argument('--wd', type=float, help='weight decay of sgd')
parser.add_argument('--frequency_save', type=int,
help=' frequency_save, 0 is never')
parser.add_argument('--random_seed', type=int, help='random seed')
parser.add_argument('--yaml_path', type=str, default="./config/defense/dbd/config.yaml", help='the path of yaml')
#set the parameter for the dbd defense
parser.add_argument('--epoch_warmup',type=int )
parser.add_argument('--batch_size_self',type=int )
parser.add_argument('--temperature',type=int )
parser.add_argument('--epsilon',type=int )
parser.add_argument('--epoch_self',type=int )
parser.add_argument('--config_pretrain',type=str )
parser.add_argument('--config_semi',type=str )
parser.add_argument('--num_workers_semi',type=int )
def set_result(self, result_file):
attack_file = 'record/' + result_file
save_path = 'record/' + result_file + f'/defense/{self.__class__.__name__}/'
if not (os.path.exists(save_path)):
os.makedirs(save_path)
# assert(os.path.exists(save_path))
self.args.save_path = save_path
if self.args.checkpoint_save is None:
self.args.checkpoint_save = save_path + 'checkpoint/'
if not (os.path.exists(self.args.checkpoint_save)):
os.makedirs(self.args.checkpoint_save)
if self.args.log is None:
self.args.log = save_path + 'log/'
if not (os.path.exists(self.args.log)):
os.makedirs(self.args.log)
self.result = load_attack_result(attack_file + '/attack_result.pt')
def set_logger(self):
args = self.args
logFormatter = logging.Formatter(
fmt='%(asctime)s [%(levelname)-8s] [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d:%H:%M:%S',
)
logger = logging.getLogger()
fileHandler = logging.FileHandler(args.log + '/' + time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime()) + '.log')
fileHandler.setFormatter(logFormatter)
logger.addHandler(fileHandler)
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(logFormatter)
logger.addHandler(consoleHandler)
logger.setLevel(logging.INFO)
logging.info(pformat(args.__dict__))
try:
logging.info(pformat(get_git_info()))
except:
logging.info('Getting git info fails.')
def set_devices(self):
# self.device = torch.device(
# (
# f"cuda:{[int(i) for i in self.args.device[5:].split(',')][0]}" if "," in self.args.device else self.args.device
# # since DataParallel only allow .to("cuda")
# ) if torch.cuda.is_available() else "cpu"
# )
self.device = self.args.device
def mitigation(self):
args = self.args
result = self.result
self.set_devices()
fix_random(self.args.random_seed)
logger = logging.getLogger()
logging.info("===Setup running===")
agg = Metric_Aggregator()
# remove the transforms except ToTensor
# bd_train_trans = result["bd_train"].wrap_img_transform
# bd_test_trans = result["bd_test"].wrap_img_transform
# clean_test_trans = result["clean_test"].wrap_img_transform
# result["bd_train"].wrap_img_transform = torchvision.transforms.ToTensor()
# result["bd_test"].wrap_img_transform = torchvision.transforms.ToTensor()
# result["clean_test"].wrap_img_transform = torchvision.transforms.ToTensor()
# Turn off all transforms, so that the dataset return PIL.Image.Image object
self.result["bd_train"].wrap_img_transform = None
self.result["bd_test"].wrap_img_transform = None
self.result["clean_test"].wrap_img_transform = None
if args.checkpoint_load == None:
args.resume = 'False'
else :
args.resume = args.checkpoint_load
if 'config_pretrain' not in self.args or self.args.config_pretrain is None:
if args.dataset == 'cifar10':
config_file = os.path.join(os.path.abspath(os.path.dirname(__file__)),'../utils/defense_utils/dbd/config_z/pretrain' , 'squareTrigger' , args.dataset , 'example.yaml')
else:
config_file = os.path.join(os.path.abspath(os.path.dirname(__file__)),'../utils/defense_utils/dbd/config_z/pretrain/' , 'squareTrigger/imagenet/example.yaml')
else:
config_file = self.args.config_pretrain
config_ori = load_config(config_file)
try:
gpu = int(os.environ['CUDA_VISIBLE_DEVICES'])
except:
print('CUDA_VISIBLE_DEVICES is not set. Set GPU=1 now.')
gpu = 0
logging.info("===Prepare data===")
# args.model = 'resnet'
information = get_information(args,result,config_ori)
self_poison_train_loader = information['self_poison_train_loader']
self_model = information['self_model']
criterion = information['criterion']
optimizer = information['optimizer']
scheduler = information['scheduler']
resumed_epoch = information['resumed_epoch']
# a.self-supervised learning generates feature extractor
agg = Metric_Aggregator()
self_loss_list = []
for epoch in range(args.epoch_self - resumed_epoch):
self_train_result = simclr_train(
self_model, self_poison_train_loader, criterion, optimizer, logger, False
)
if scheduler is not None:
scheduler.step()
logger.info(
"Adjust learning rate to {}".format(optimizer.param_groups[0]["lr"])
)
result_self = {"self_train": self_train_result}
saved_dict = {
"epoch": epoch + resumed_epoch + 1,
"result": result_self,
"model_state_dict": self_model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
}
if scheduler is not None:
saved_dict["scheduler_state_dict"] = scheduler.state_dict()
ckpt_path = os.path.join(args.checkpoint_save, "self_latest_model.pt")
torch.save(saved_dict, ckpt_path)
logger.info("Save the latest model to {}".format(ckpt_path))
agg({
"epoch": epoch,
"loss_self": self_train_result["loss"],
})
self_loss_list.append(self_train_result["loss"])
agg.to_dataframe().to_csv(os.path.join(f"{args.save_path}","self_df.csv"))
general_plot_for_epoch(
{
"self loss": self_loss_list,
},
save_path=os.path.join(f"{args.save_path}","self_loss.png"),
ylabel="loss",
)
agg.summary().to_csv(os.path.join(f"{args.save_path}","self_df_summary.csv"))
if 'config_semi' not in self.args or self.args.config_semi is None:
if args.dataset == 'cifar10':
config_file_semi = os.path.join(os.path.abspath(os.path.dirname(__file__)),'../utils/defense_utils/dbd/config_z/semi' , 'badnets' , args.dataset , 'example.yaml')
else:
config_file_semi = os.path.join(os.path.abspath(os.path.dirname(__file__)),'../utils/defense_utils/dbd/config_z/semi' , 'badnets/imagenet/example.yaml')
else:
config_file_semi = self.args.config_semi
finetune_config= load_config(config_file_semi)
pretrain_config= load_config(
config_file
)
pretrain_ckpt_path = ckpt_path
# merge the pretrain and finetune config
pretrain_config.update(finetune_config)
pretrain_config['warmup']['criterion']['sce']['num_classes'] = args.num_classes
pretrain_config['warmup']['num_epochs'] = args.epoch_warmup
args.batch_size = 128
logging.info("\n===Prepare data===")
# If prefetch is True, Normalize will not be added to the transform. Normalize will be called by PrefecthLoader.
# If prefetch is False, Normalize will be added to the transform.
train_transform = get_transform_prefetch(args.dataset, *([args.input_height,args.input_width]) , train = True,prefetch=args.prefetch)
x = slice_iter(result["bd_train"], axis=0)
y = slice_iter(result["bd_train"], axis=1)
# train transform will not be called in xy_iter since it only be used to pass x,y to PoisonLabelDataset.
# TODO: change xy_iter to a dict to avoid confusion
dataset_ori = xy_iter(
x,y,train_transform
)
# train transform will be called in PoisonLabelDataset
dataset = PoisonLabelDataset(dataset_ori, train_transform, np.zeros(len(dataset_ori)), True,args)
poison_train_loader_ori = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, num_workers=args.num_workers,drop_last=False, shuffle=True,pin_memory=True)
poison_eval_loader_ori = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, num_workers=args.num_workers,drop_last=False, shuffle=False,pin_memory=True)
if args.prefetch:
# x,y: PIL.Image.Image -> PoisonLabelDataset: Tensor with trans, no normalization [0,255]-> PrefetchLoader: Tensor with trans [0,1], with normalization
poison_train_loader = PrefetchLoader(poison_train_loader_ori, dataset.mean, dataset.std)
poison_eval_loader = PrefetchLoader(poison_eval_loader_ori, dataset.mean, dataset.std)
else:
# x,y: PIL.Image.Image -> PoisonLabelDataset: Tensor with trans [0,1], with normalization
poison_train_loader = poison_train_loader_ori
poison_eval_loader = poison_eval_loader_ori
test_transform = get_transform(args.dataset, *([args.input_height,args.input_width]) , train = False)
x = slice_iter(result["bd_test"], axis=0)
y = slice_iter(result["bd_test"], axis=1)
ori_y = slice_iter(result["bd_test"], axis=4)
dataset_ori_bd = xy_iter(
x,y,train_transform
)
# x,y: PIL.Image.Image -> PoisonLabelDataset: Tensor with trans [0,1], with normalization
dataset_te_bd = PoisonLabelDataset(dataset_ori_bd, test_transform, np.zeros(len(dataset_ori_bd)), False,args)
poison_test_loader = torch.utils.data.DataLoader(dataset_te_bd, batch_size=args.batch_size, num_workers=args.num_workers,drop_last=False, shuffle=False,pin_memory=True)
dataset_ori_bd_cl = xy_iter(
x,ori_y,train_transform
)
# x,y: PIL.Image.Image -> PoisonLabelDataset: Tensor with trans [0,1], with normalization
dataset_te_bd_cl = PoisonLabelDataset(dataset_ori_bd_cl, test_transform, np.zeros(len(dataset_ori_bd)), False,args)
poison_clean_test_loader = torch.utils.data.DataLoader(dataset_te_bd_cl, batch_size=args.batch_size, num_workers=args.num_workers,drop_last=False, shuffle=False,pin_memory=True)
x = slice_iter(result["clean_test"], axis=0)
y = slice_iter(result["clean_test"], axis=1)
dataset_ori_cl = xy_iter(
x,y,train_transform
)
# x,y: PIL.Image.Image -> PoisonLabelDataset: Tensor with trans [0,1], with normalization
dataset_te_cl = PoisonLabelDataset(dataset_ori_cl, test_transform, np.zeros(len(dataset_ori_cl)), False,args)
clean_test_loader = torch.utils.data.DataLoader(dataset_te_cl, batch_size=args.batch_size, num_workers=args.num_workers,drop_last=False, shuffle=False,pin_memory=True)
backbone = get_network_dbd(args)
self_model = SelfModel(backbone)
self_model = self_model.to(args.device)
# # Load backbone from the pretrained model.
loc = os.path.join(args.checkpoint_save, "self_latest_model.pt")
load_state(
self_model, pretrain_config["pretrain_checkpoint"], loc, args.device, logger
)
linear_model = LinearModel(backbone, backbone.feature_dim, args.num_classes)
linear_model.linear.to(args.device)
warmup_criterion = get_criterion(pretrain_config["warmup"]["criterion"])
logger.info("Create criterion: {} for warmup".format(warmup_criterion))
warmup_criterion = warmup_criterion.to(args.device)
semi_criterion = get_criterion(pretrain_config["semi"]["criterion"])
semi_criterion = semi_criterion.to(args.device)
logger.info("Create criterion: {} for semi-training".format(semi_criterion))
optimizer = get_optimizer(linear_model, pretrain_config["optimizer"])
logger.info("Create optimizer: {}".format(optimizer))
scheduler = get_scheduler(optimizer, pretrain_config["lr_scheduler"])
logger.info("Create learning rete scheduler: {}".format(pretrain_config["lr_scheduler"]))
if args.checkpoint_load == '' or args.checkpoint_load is None:
resume = 'False'
resumed_epoch, best_acc, best_epoch = load_state(
linear_model,
resume,
args.checkpoint_load,
gpu,
logger,
optimizer,
scheduler,
is_best=True,
)
# b. learning model using extracted features
agg = Metric_Aggregator()
num_epochs = args.epoch_warmup + args.epochs
train_loss_list = []
train_mix_acc_list = []
clean_test_loss_list = []
bd_test_loss_list = []
ra_test_loss_list = []
test_acc_list = []
test_asr_list = []
test_ra_list = []
for epoch in range(num_epochs - resumed_epoch):
logger.info("===Epoch: {}/{}===".format(epoch + resumed_epoch + 1, num_epochs))
if (epoch + resumed_epoch + 1) <= args.epoch_warmup:
logger.info("Poisoned linear warmup...")
poison_train_result = poison_linear_train(
linear_model, poison_train_loader, warmup_criterion, optimizer, logger,
)
flag = 0
else:
record_list = poison_linear_record(
linear_model, poison_eval_loader, warmup_criterion
)
logger.info("Mining clean data from poisoned dataset...")
# c. the samples with poor confidence were excluded, and semi-supervised learning was used to continue the learning model
semi_idx = get_semi_idx(record_list, args.epsilon, logger)
xdata = MixMatchDataset(dataset, semi_idx, labeled=True,args=args)
udata = MixMatchDataset(dataset, semi_idx, labeled=False,args=args)
pretrain_config["semi"]["loader"]['num_workers'] = args.num_workers_semi
# If prefetch, prefetchloader is used to load data. Else, dataloader is used.
# PIL->tensor with trans and normalization
if args.model == 'vit_b_16':
pretrain_config["semi"]["loader"]['batch_size'] = 32
logger.info('We adjusted the batch size of the dataloader for vit model')
xloader = get_loader(
xdata, pretrain_config["semi"]["loader"], shuffle=True, drop_last=True
)
uloader = get_loader(
udata, pretrain_config["semi"]["loader"], shuffle=True, drop_last=True
)
logger.info("MixMatch training...")
poison_train_result = mixmatch_train(
args,
linear_model,
xloader,
uloader,
semi_criterion,
optimizer,
epoch,
logger,
**pretrain_config["semi"]["mixmatch"]
)
flag = 1
logger.info("Test model on clean data...")
clean_test_result = linear_test(
linear_model, clean_test_loader, warmup_criterion, logger
)
logger.info("Test model on poison data...")
poison_test_result = linear_test(
linear_model, poison_test_loader, warmup_criterion, logger
)
logger.info("Test model on poison data with clean label...")
poison_clean_test_result = linear_test(
linear_model, poison_clean_test_loader, warmup_criterion, logger
)
if scheduler is not None:
scheduler.step()
logger.info(
"Adjust learning rate to {}".format(optimizer.param_groups[0]["lr"])
)
is_best = False
if clean_test_result["acc"] > best_acc:
is_best = True
best_acc = clean_test_result["acc"]
best_epoch = epoch + resumed_epoch + 1
logger.info("Best test accuaracy {} in epoch {}".format(best_acc, best_epoch))
saved_dict = {
"epoch": epoch + resumed_epoch + 1,
"result": result,
"model_state_dict": linear_model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"best_acc": best_acc,
"best_epoch": best_epoch,
}
if scheduler is not None:
saved_dict["scheduler_state_dict"] = scheduler.state_dict()
if is_best:
ckpt_path = os.path.join(args.checkpoint_save, "best_model.pt")
torch.save(saved_dict, ckpt_path)
logger.info("Save the best model to {}".format(ckpt_path))
ckpt_path = os.path.join(args.checkpoint_save, "semi_latest_model.pt")
torch.save(saved_dict, ckpt_path)
logger.info("Save the latest model to {}".format(ckpt_path))
try:
agg({
"epoch": epoch,
"is_pretrain": flag,
"train_epoch_loss_avg_over_batch": poison_train_result["loss"],
"train_acc": poison_train_result["acc"],
"xloss": 0,
"uloss": 0,
"clean_test_loss_avg_over_batch": clean_test_result['loss'],
"bd_test_loss_avg_over_batch": poison_test_result['loss'],
"ra_test_loss_avg_over_batch": poison_clean_test_result['loss'],
"test_acc": clean_test_result['acc'],
"test_asr": poison_test_result['acc'],
"test_ra": poison_clean_test_result['acc'],
})
train_loss_list.append(poison_train_result["loss"])
train_mix_acc_list.append(poison_train_result["acc"])
except:
agg({
"epoch": epoch,
"is_pretrain": flag,
"train_epoch_loss_avg_over_batch": poison_train_result["loss"],
"train_acc": 0,
"xloss": poison_train_result["xloss"],
"uloss": poison_train_result["uloss"],
"clean_test_loss_avg_over_batch": clean_test_result['loss'],
"bd_test_loss_avg_over_batch": poison_test_result['loss'],
"ra_test_loss_avg_over_batch": poison_clean_test_result['loss'],
"test_acc": clean_test_result['acc'],
"test_asr": poison_test_result['acc'],
"test_ra": poison_clean_test_result['acc'],
})
train_loss_list.append(poison_train_result["loss"])
train_mix_acc_list.append(0)
clean_test_loss_list.append(clean_test_result['loss'])
bd_test_loss_list.append(poison_test_result['loss'])
ra_test_loss_list.append(poison_clean_test_result['loss'])
test_acc_list.append(clean_test_result['acc'])
test_asr_list.append(poison_test_result['acc'])
test_ra_list.append(poison_clean_test_result['acc'])
general_plot_for_epoch(
{
"Train Acc": train_mix_acc_list,
"Test C-Acc": test_acc_list,
"Test ASR": test_asr_list,
"Test RA": test_ra_list,
},
save_path=os.path.join(f"{args.save_path}","train_acc_like_metric_plots.png"),
ylabel="percentage",
)
general_plot_for_epoch(
{
"Train Loss": train_loss_list,
"Test Clean Loss": clean_test_loss_list,
"Test Backdoor Loss": bd_test_loss_list,
"Test RA Loss": ra_test_loss_list,
},
save_path=os.path.join(f"{args.save_path}","train_loss_metric_plots.png"),
ylabel="percentage",
)
agg.to_dataframe().to_csv(os.path.join(f"{args.save_path}","train_df.csv"))
agg.summary().to_csv(os.path.join(f"{args.save_path}","train_df_summary.csv"))
agg.summary().to_csv(os.path.join(f"{args.save_path}",f"{self.__class__.__name__}_df_summary.csv"))
save_defense_result(
model_name=self.args.model,
num_classes=self.args.num_classes,
model=linear_model.cpu().state_dict(),
save_path=self.args.save_path,
)
result = {}
result['model'] = linear_model
return result
def defense(self,result_file):
self.set_result(result_file)
self.set_logger()
result = self.mitigation()
return result
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=sys.argv[0])
dbd.add_arguments(parser)
args = parser.parse_args()
dbd_method = dbd(args)
if "result_file" not in args.__dict__:
args.result_file = 'one_epochs_debug_badnet_attack'
elif args.result_file is None:
args.result_file = 'one_epochs_debug_badnet_attack'
result = dbd_method.defense(args.result_file)
# GNU GENERAL PUBLIC LICENSE
# Version 3, 29 June 2007
# Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
# Everyone is permitted to copy and distribute verbatim copies
# of this license document, but changing it is not allowed.
# Preamble
# The GNU General Public License is a free, copyleft license for
# software and other kinds of works.
# The licenses for most software and other practical works are designed
# to take away your freedom to share and change the works. By contrast,
# the GNU General Public License is intended to guarantee your freedom to
# share and change all versions of a program--to make sure it remains free
# software for all its users. We, the Free Software Foundation, use the
# GNU General Public License for most of our software; it applies also to
# any other work released this way by its authors. You can apply it to
# your programs, too.
# When we speak of free software, we are referring to freedom, not
# price. Our General Public Licenses are designed to make sure that you
# have the freedom to distribute copies of free software (and charge for
# them if you wish), that you receive source code or can get it if you
# want it, that you can change the software or use pieces of it in new
# free programs, and that you know you can do these things.
# To protect your rights, we need to prevent others from denying you
# these rights or asking you to surrender the rights. Therefore, you have
# certain responsibilities if you distribute copies of the software, or if
# you modify it: responsibilities to respect the freedom of others.
# For example, if you distribute copies of such a program, whether
# gratis or for a fee, you must pass on to the recipients the same
# freedoms that you received. You must make sure that they, too, receive
# or can get the source code. And you must show them these terms so they
# know their rights.
# Developers that use the GNU GPL protect your rights with two steps:
# (1) assert copyright on the software, and (2) offer you this License
# giving you legal permission to copy, distribute and/or modify it.
# For the developers' and authors' protection, the GPL clearly explains
# that there is no warranty for this free software. For both users' and
# authors' sake, the GPL requires that modified versions be marked as
# changed, so that their problems will not be attributed erroneously to
# authors of previous versions.
# Some devices are designed to deny users access to install or run
# modified versions of the software inside them, although the manufacturer
# can do so. This is fundamentally incompatible with the aim of
# protecting users' freedom to change the software. The systematic
# pattern of such abuse occurs in the area of products for individuals to
# use, which is precisely where it is most unacceptable. Therefore, we
# have designed this version of the GPL to prohibit the practice for those
# products. If such problems arise substantially in other domains, we
# stand ready to extend this provision to those domains in future versions
# of the GPL, as needed to protect the freedom of users.
# Finally, every program is threatened constantly by software patents.
# States should not allow patents to restrict development and use of
# software on general-purpose computers, but in those that do, we wish to
# avoid the special danger that patents applied to a free program could
# make it effectively proprietary. To prevent this, the GPL assures that
# patents cannot be used to render the program non-free.
# The precise terms and conditions for copying, distribution and
# modification follow.
# TERMS AND CONDITIONS
# 0. Definitions.
# "This License" refers to version 3 of the GNU General Public License.
# "Copyright" also means copyright-like laws that apply to other kinds of
# works, such as semiconductor masks.
# "The Program" refers to any copyrightable work licensed under this
# License. Each licensee is addressed as "you". "Licensees" and
# "recipients" may be individuals or organizations.
# To "modify" a work means to copy from or adapt all or part of the work
# in a fashion requiring copyright permission, other than the making of an
# exact copy. The resulting work is called a "modified version" of the
# earlier work or a work "based on" the earlier work.
# A "covered work" means either the unmodified Program or a work based
# on the Program.
# To "propagate" a work means to do anything with it that, without
# permission, would make you directly or secondarily liable for
# infringement under applicable copyright law, except executing it on a
# computer or modifying a private copy. Propagation includes copying,
# distribution (with or without modification), making available to the
# public, and in some countries other activities as well.
# To "convey" a work means any kind of propagation that enables other
# parties to make or receive copies. Mere interaction with a user through
# a computer network, with no transfer of a copy, is not conveying.
# An interactive user interface displays "Appropriate Legal Notices"
# to the extent that it includes a convenient and prominently visible
# feature that (1) displays an appropriate copyright notice, and (2)
# tells the user that there is no warranty for the work (except to the
# extent that warranties are provided), that licensees may convey the
# work under this License, and how to view a copy of this License. If
# the interface presents a list of user commands or options, such as a
# menu, a prominent item in the list meets this criterion.
# 1. Source Code.
# The "source code" for a work means the preferred form of the work
# for making modifications to it. "Object code" means any non-source
# form of a work.
# A "Standard Interface" means an interface that either is an official
# standard defined by a recognized standards body, or, in the case of
# interfaces specified for a particular programming language, one that
# is widely used among developers working in that language.
# The "System Libraries" of an executable work include anything, other
# than the work as a whole, that (a) is included in the normal form of
# packaging a Major Component, but which is not part of that Major
# Component, and (b) serves only to enable use of the work with that
# Major Component, or to implement a Standard Interface for which an
# implementation is available to the public in source code form. A
# "Major Component", in this context, means a major essential component
# (kernel, window system, and so on) of the specific operating system
# (if any) on which the executable work runs, or a compiler used to
# produce the work, or an object code interpreter used to run it.
# The "Corresponding Source" for a work in object code form means all
# the source code needed to generate, install, and (for an executable
# work) run the object code and to modify the work, including scripts to
# control those activities. However, it does not include the work's
# System Libraries, or general-purpose tools or generally available free
# programs which are used unmodified in performing those activities but
# which are not part of the work. For example, Corresponding Source
# includes interface definition files associated with source files for
# the work, and the source code for shared libraries and dynamically
# linked subprograms that the work is specifically designed to require,
# such as by intimate data communication or control flow between those
# subprograms and other parts of the work.
# The Corresponding Source need not include anything that users
# can regenerate automatically from other parts of the Corresponding
# Source.
# The Corresponding Source for a work in source code form is that
# same work.
# 2. Basic Permissions.
# All rights granted under this License are granted for the term of
# copyright on the Program, and are irrevocable provided the stated
# conditions are met. This License explicitly affirms your unlimited
# permission to run the unmodified Program. The output from running a
# covered work is covered by this License only if the output, given its
# content, constitutes a covered work. This License acknowledges your
# rights of fair use or other equivalent, as provided by copyright law.
# You may make, run and propagate covered works that you do not
# convey, without conditions so long as your license otherwise remains
# in force. You may convey covered works to others for the sole purpose
# of having them make modifications exclusively for you, or provide you
# with facilities for running those works, provided that you comply with
# the terms of this License in conveying all material for which you do
# not control copyright. Those thus making or running the covered works
# for you must do so exclusively on your behalf, under your direction
# and control, on terms that prohibit them from making any copies of
# your copyrighted material outside their relationship with you.
# Conveying under any other circumstances is permitted solely under
# the conditions stated below. Sublicensing is not allowed; section 10
# makes it unnecessary.
# 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
# No covered work shall be deemed part of an effective technological
# measure under any applicable law fulfilling obligations under article
# 11 of the WIPO copyright treaty adopted on 20 December 1996, or
# similar laws prohibiting or restricting circumvention of such
# measures.
# When you convey a covered work, you waive any legal power to forbid
# circumvention of technological measures to the extent such circumvention
# is effected by exercising rights under this License with respect to
# the covered work, and you disclaim any intention to limit operation or
# modification of the work as a means of enforcing, against the work's
# users, your or third parties' legal rights to forbid circumvention of
# technological measures.
# 4. Conveying Verbatim Copies.
# You may convey verbatim copies of the Program's source code as you
# receive it, in any medium, provided that you conspicuously and
# appropriately publish on each copy an appropriate copyright notice;
# keep intact all notices stating that this License and any
# non-permissive terms added in accord with section 7 apply to the code;
# keep intact all notices of the absence of any warranty; and give all
# recipients a copy of this License along with the Program.
# You may charge any price or no price for each copy that you convey,
# and you may offer support or warranty protection for a fee.
# 5. Conveying Modified Source Versions.
# You may convey a work based on the Program, or the modifications to
# produce it from the Program, in the form of source code under the
# terms of section 4, provided that you also meet all of these conditions:
# a) The work must carry prominent notices stating that you modified
# it, and giving a relevant date.
# b) The work must carry prominent notices stating that it is
# released under this License and any conditions added under section
# 7. This requirement modifies the requirement in section 4 to
# "keep intact all notices".
# c) You must license the entire work, as a whole, under this
# License to anyone who comes into possession of a copy. This
# License will therefore apply, along with any applicable section 7
# additional terms, to the whole of the work, and all its parts,
# regardless of how they are packaged. This License gives no
# permission to license the work in any other way, but it does not
# invalidate such permission if you have separately received it.
# d) If the work has interactive user interfaces, each must display
# Appropriate Legal Notices; however, if the Program has interactive
# interfaces that do not display Appropriate Legal Notices, your
# work need not make them do so.
# A compilation of a covered work with other separate and independent
# works, which are not by their nature extensions of the covered work,
# and which are not combined with it such as to form a larger program,
# in or on a volume of a storage or distribution medium, is called an
# "aggregate" if the compilation and its resulting copyright are not
# used to limit the access or legal rights of the compilation's users
# beyond what the individual works permit. Inclusion of a covered work
# in an aggregate does not cause this License to apply to the other
# parts of the aggregate.
# 6. Conveying Non-Source Forms.
# You may convey a covered work in object code form under the terms
# of sections 4 and 5, provided that you also convey the
# machine-readable Corresponding Source under the terms of this License,
# in one of these ways:
# a) Convey the object code in, or embodied in, a physical product
# (including a physical distribution medium), accompanied by the
# Corresponding Source fixed on a durable physical medium
# customarily used for software interchange.
# b) Convey the object code in, or embodied in, a physical product
# (including a physical distribution medium), accompanied by a
# written offer, valid for at least three years and valid for as
# long as you offer spare parts or customer support for that product
# model, to give anyone who possesses the object code either (1) a
# copy of the Corresponding Source for all the software in the
# product that is covered by this License, on a durable physical
# medium customarily used for software interchange, for a price no
# more than your reasonable cost of physically performing this
# conveying of source, or (2) access to copy the
# Corresponding Source from a network server at no charge.
# c) Convey individual copies of the object code with a copy of the
# written offer to provide the Corresponding Source. This
# alternative is allowed only occasionally and noncommercially, and
# only if you received the object code with such an offer, in accord
# with subsection 6b.
# d) Convey the object code by offering access from a designated
# place (gratis or for a charge), and offer equivalent access to the
# Corresponding Source in the same way through the same place at no
# further charge. You need not require recipients to copy the
# Corresponding Source along with the object code. If the place to
# copy the object code is a network server, the Corresponding Source
# may be on a different server (operated by you or a third party)
# that supports equivalent copying facilities, provided you maintain
# clear directions next to the object code saying where to find the
# Corresponding Source. Regardless of what server hosts the
# Corresponding Source, you remain obligated to ensure that it is
# available for as long as needed to satisfy these requirements.
# e) Convey the object code using peer-to-peer transmission, provided
# you inform other peers where the object code and Corresponding
# Source of the work are being offered to the general public at no
# charge under subsection 6d.
# A separable portion of the object code, whose source code is excluded
# from the Corresponding Source as a System Library, need not be
# included in conveying the object code work.
# A "User Product" is either (1) a "consumer product", which means any
# tangible personal property which is normally used for personal, family,
# or household purposes, or (2) anything designed or sold for incorporation