-
Notifications
You must be signed in to change notification settings - Fork 71
/
i-bau.py
694 lines (589 loc) · 25.4 KB
/
i-bau.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
# MIT License
# Copyright (c) 2021 Yi Zeng
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
'''
Adversarial unlearning of backdoors via implicit hypergradient
This file is modified based on the following source:
link : https://github.com/YiZeng623/I-BAU/
@inproceedings{zeng2021adversarial,
title={Adversarial Unlearning of Backdoors via Implicit Hypergradient},
author={Zeng, Yi and Chen, Si and Park, Won and Mao, Zhuoqing and Jin, Ming and Jia, Ruoxi},
booktitle={International Conference on Learning Representations},
year={2021}
}
The defense method is called i-bau.
The license is bellow the code
The update include:
1. data preprocess and dataset setting
2. model setting
3. args and config
4. save process
5. new standard: robust accuracy
6. use clean samples from training (align other defense Settings)
basic sturcture for defense method:
1. basic setting: args
2. attack result(model, train data, test data)
3. i-bau defense:
a. get some clean data
b. unlearn the backdoor model by the pertubation
4. test the result and get ASR, ACC, RC
'''
import argparse
import os,sys
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# TODO:怎么查看包的相对路径和绝对路径
sys.path.append('../')
sys.path.append(os.getcwd())
# TODO:修改yaml文件
from pprint import pformat
import yaml
import logging
import time
from defense.base import defense
from utils.aggregate_block.train_settings_generate import argparser_opt_scheduler
from utils.trainer_cls import Metric_Aggregator, PureCleanModelTrainer, general_plot_for_epoch, given_dataloader_test
from utils.choose_index import choose_index
from utils.aggregate_block.fix_random import fix_random
from utils.aggregate_block.model_trainer_generate import generate_cls_model
from utils.log_assist import get_git_info
from utils.aggregate_block.dataset_and_transform_generate import get_input_shape, get_num_classes, get_transform, get_dataset_normalization
from utils.save_load_attack import load_attack_result, save_defense_result
from utils.bd_dataset_v2 import prepro_cls_DatasetBD_v2
import torchvision.transforms as transforms
import random
from itertools import repeat
from typing import List, Callable
from torch import Tensor
from torch.autograd import grad as torch_grad
'''
Based on the paper 'On the Iteration Complexity of Hypergradient Computation,' this code was created.
Source: https://github.com/prolearner/hypertorch/blob/master/hypergrad/hypergradients.py
Original Author: Riccardo Grazzi
'''
class DifferentiableOptimizer:
def __init__(self, loss_f, dim_mult, data_or_iter=None):
"""
Args:
loss_f: callable with signature (params, hparams, [data optional]) -> loss tensor
data_or_iter: (x, y) or iterator over the data needed for loss_f
"""
self.data_iterator = None
if data_or_iter:
self.data_iterator = data_or_iter if hasattr(data_or_iter, '__next__') else repeat(data_or_iter)
self.loss_f = loss_f
self.dim_mult = dim_mult
self.curr_loss = None
def get_opt_params(self, params):
opt_params = [p for p in params]
opt_params.extend([torch.zeros_like(p) for p in params for _ in range(self.dim_mult-1) ])
return opt_params
def step(self, params, hparams, create_graph):
raise NotImplementedError
def __call__(self, params, hparams, create_graph=True):
with torch.enable_grad():
return self.step(params, hparams, create_graph)
def get_loss(self, params, hparams):
if self.data_iterator:
data = next(self.data_iterator)
self.curr_loss = self.loss_f(params, hparams, data)
else:
self.curr_loss = self.loss_f(params, hparams)
return self.curr_loss
class GradientDescent(DifferentiableOptimizer):
def __init__(self, loss_f, step_size, data_or_iter=None):
super(GradientDescent, self).__init__(loss_f, dim_mult=1, data_or_iter=data_or_iter)
self.step_size_f = step_size if callable(step_size) else lambda x: step_size
def step(self, params, hparams, create_graph):
loss = self.get_loss(params, hparams)
sz = self.step_size_f(hparams)
return gd_step(params, loss, sz, create_graph=create_graph)
def gd_step(params, loss, step_size, create_graph=True):
grads = torch.autograd.grad(loss, params, create_graph=create_graph)
return [w - step_size * g for w, g in zip(params, grads)]
def grad_unused_zero(output, inputs, grad_outputs=None, retain_graph=False, create_graph=False):
grads = torch.autograd.grad(output, inputs, grad_outputs=grad_outputs, allow_unused=True,
retain_graph=retain_graph, create_graph=create_graph)
def grad_or_zeros(grad, var):
return torch.zeros_like(var) if grad is None else grad
return tuple(grad_or_zeros(g, v) for g, v in zip(grads, inputs))
def get_outer_gradients(outer_loss, params, hparams, retain_graph=True):
grad_outer_w = grad_unused_zero(outer_loss, params, retain_graph=retain_graph)
grad_outer_hparams = grad_unused_zero(outer_loss, hparams, retain_graph=retain_graph)
return grad_outer_w, grad_outer_hparams
def update_tensor_grads(hparams, grads):
for l, g in zip(hparams, grads):
if l.grad is None:
l.grad = torch.zeros_like(l)
if g is not None:
l.grad += g
def fixed_point(params: List[Tensor],
hparams: List[Tensor],
K: int ,
fp_map: Callable[[List[Tensor], List[Tensor]], List[Tensor]],
outer_loss: Callable[[List[Tensor], List[Tensor]], Tensor],
tol=1e-10,
set_grad=True,
stochastic=False) -> List[Tensor]:
"""
Computes the hypergradient by applying K steps of the fixed point method (it can end earlier when tol is reached).
Args:
params: the output of the inner solver procedure.
hparams: the outer variables (or hyperparameters), each element needs requires_grad=True
K: the maximum number of fixed point iterations
fp_map: the fixed point map which defines the inner problem
outer_loss: computes the outer objective taking parameters and hyperparameters as inputs
tol: end the method earlier when the normed difference between two iterates is less than tol
set_grad: if True set t.grad to the hypergradient for every t in hparams
stochastic: set this to True when fp_map is not a deterministic function of its inputs
Returns:
the list of hypergradients for each element in hparams
"""
params = [w.detach().requires_grad_(True) for w in params]
o_loss = outer_loss(params, hparams)
grad_outer_w, grad_outer_hparams = get_outer_gradients(o_loss, params, hparams)
if not stochastic:
w_mapped = fp_map(params, hparams)
vs = [torch.zeros_like(w) for w in params]
vs_vec = cat_list_to_tensor(vs)
for k in range(K):
vs_prev_vec = vs_vec
if stochastic:
w_mapped = fp_map(params, hparams)
vs = torch_grad(w_mapped, params, grad_outputs=vs, retain_graph=False)
else:
vs = torch_grad(w_mapped, params, grad_outputs=vs, retain_graph=True)
vs = [v + gow for v, gow in zip(vs, grad_outer_w)]
vs_vec = cat_list_to_tensor(vs)
if float(torch.norm(vs_vec - vs_prev_vec)) < tol:
break
if stochastic:
w_mapped = fp_map(params, hparams)
grads = torch_grad(w_mapped, hparams, grad_outputs=vs, allow_unused=True)
grads = [g + v if g is not None else v for g, v in zip(grads, grad_outer_hparams)]
if set_grad:
update_tensor_grads(hparams, grads)
return grads
def cat_list_to_tensor(list_tx):
return torch.cat([xx.reshape([-1]) for xx in list_tx])
class i_bau(defense):
r"""Adversarial unlearning of backdoors via implicit hypergradient
basic structure:
1. config args, save_path, fix random seed
2. load the backdoor attack data and backdoor test data
3. load the backdoor model
4. i-bau defense:
a. train the adversarial purturbaion by the clean data using the hypergradient
b. unlearn the backdoor model by the pertubation
c. repeat a and b for several rounds
5. test the result and get ASR, ACC, RC
.. code-block:: python
parser = argparse.ArgumentParser(description=sys.argv[0])
i_bau.add_arguments(parser)
args = parser.parse_args()
i_bau_method = i_bau(args)
if "result_file" not in args.__dict__:
args.result_file = 'one_epochs_debug_badnet_attack'
elif args.result_file is None:
args.result_file = 'one_epochs_debug_badnet_attack'
result = i_bau_method.defense(args.result_file)
.. Note::
@article{zeng2021adversarial,
title={Adversarial unlearning of backdoors via implicit hypergradient},
author={Zeng, Yi and Chen, Si and Park, Won and Mao, Z Morley and Jin, Ming and Jia, Ruoxi},
journal={arXiv preprint arXiv:2110.03735},
year={2021}
}
Args:
baisc args: in the base class
ratio (float): the ratio of clean data loader
index (str): index of clean data
optim (str): type of outer loop optimizer utilized (default: Adam) to train the adversarial purturbaion
n_rounds (int): the maximum number of unlearning rounds and the number of fixed point iterations (default: 10)
K (int): the maximum number of fixed point iterations (default: 10)
"""
def __init__(self,args):
with open(args.yaml_path, 'r') as f:
defaults = yaml.safe_load(f)
defaults.update({k:v for k,v in args.__dict__.items() if v is not None})
args.__dict__ = defaults
args.terminal_info = sys.argv
args.num_classes = get_num_classes(args.dataset)
args.input_height, args.input_width, args.input_channel = get_input_shape(args.dataset)
args.img_size = (args.input_height, args.input_width, args.input_channel)
args.dataset_path = f"{args.dataset_path}/{args.dataset}"
# TODO:直接用self.args好不好用
self.args = args
if 'result_file' in args.__dict__ :
if args.result_file is not None:
self.set_result(args.result_file)
def add_arguments(parser):
parser.add_argument('--device', type=str, help='cuda, cpu')
parser.add_argument("-pm","--pin_memory", type=lambda x: str(x) in ['True', 'true', '1'], help = "dataloader pin_memory")
parser.add_argument("-nb","--non_blocking", type=lambda x: str(x) in ['True', 'true', '1'], help = ".to(), set the non_blocking = ?")
parser.add_argument("-pf", '--prefetch', type=lambda x: str(x) in ['True', 'true', '1'], help='use prefetch')
parser.add_argument('--amp', type=lambda x: str(x) in ['True','true','1'])
parser.add_argument('--checkpoint_load', type=str, help='the location of load model')
parser.add_argument('--checkpoint_save', type=str, help='the location of checkpoint where model is saved')
parser.add_argument('--log', type=str, help='the location of log')
parser.add_argument("--dataset_path", type=str, help='the location of data')
parser.add_argument('--dataset', type=str, help='mnist, cifar10, cifar100, gtrsb, tiny')
parser.add_argument('--result_file', type=str, help='the location of result')
parser.add_argument('--epochs', type=int)
parser.add_argument('--batch_size', type=int)
parser.add_argument("--num_workers", type=float)
parser.add_argument('--lr', type=float)
parser.add_argument('--lr_scheduler', type=str, help='the scheduler of lr')
parser.add_argument('--steplr_stepsize', type=int)
parser.add_argument('--steplr_gamma', type=float)
parser.add_argument('--steplr_milestones', type=list)
parser.add_argument('--model', type=str, help='resnet18')
parser.add_argument('--client_optimizer', type=int)
parser.add_argument('--sgd_momentum', type=float)
parser.add_argument('--wd', type=float, help='weight decay of sgd')
parser.add_argument('--frequency_save', type=int,
help=' frequency_save, 0 is never')
parser.add_argument('--random_seed', type=int, help='random seed')
parser.add_argument('--yaml_path', type=str, default="./config/defense/i-bau/config.yaml", help='the path of yaml')
#set the parameter for the i-bau defense
parser.add_argument('--ratio', type=float, help='the ratio of clean data loader')
parser.add_argument('--index', type=str, help='index of clean data')
parser.add_argument('--optim', type=str, default='Adam', help='type of outer loop optimizer utilized')
parser.add_argument('--n_rounds', type=int, help='the maximum number of unelarning rounds')
parser.add_argument('--K', type=int, help='the maximum number of fixed point iterations')
def set_result(self, result_file):
attack_file = 'record/' + result_file
save_path = 'record/' + result_file + '/defense/i-bau/'
if not (os.path.exists(save_path)):
os.makedirs(save_path)
# assert(os.path.exists(save_path))
self.args.save_path = save_path
if self.args.checkpoint_save is None:
self.args.checkpoint_save = save_path + 'checkpoint/'
if not (os.path.exists(self.args.checkpoint_save)):
os.makedirs(self.args.checkpoint_save)
if self.args.log is None:
self.args.log = save_path + 'log/'
if not (os.path.exists(self.args.log)):
os.makedirs(self.args.log)
self.result = load_attack_result(attack_file + '/attack_result.pt')
def set_trainer(self, model):
self.trainer = PureCleanModelTrainer(
model,
)
def set_logger(self):
args = self.args
logFormatter = logging.Formatter(
fmt='%(asctime)s [%(levelname)-8s] [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d:%H:%M:%S',
)
logger = logging.getLogger()
fileHandler = logging.FileHandler(args.log + '/' + time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime()) + '.log')
fileHandler.setFormatter(logFormatter)
logger.addHandler(fileHandler)
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(logFormatter)
logger.addHandler(consoleHandler)
logger.setLevel(logging.INFO)
logging.info(pformat(args.__dict__))
try:
logging.info(pformat(get_git_info()))
except:
logging.info('Getting git info fails.')
def set_devices(self):
# self.device = torch.device(
# (
# f"cuda:{[int(i) for i in self.args.device[5:].split(',')][0]}" if "," in self.args.device else self.args.device
# # since DataParallel only allow .to("cuda")
# ) if torch.cuda.is_available() else "cpu"
# )
self.device= self.args.device
def mitigation(self):
self.set_devices()
fix_random(self.args.random_seed)
# Prepare model, optimizer, scheduler
model = generate_cls_model(self.args.model,self.args.num_classes)
model.load_state_dict(self.result['model'])
if "," in self.device:
model = torch.nn.DataParallel(
model,
device_ids=[int(i) for i in self.args.device[5:].split(",")] # eg. "cuda:2,3,7" -> [2,3,7]
)
self.args.device = f'cuda:{model.device_ids[0]}'
model.to(self.args.device)
else:
model.to(self.args.device)
### TODO: opt
# outer_opt = torch.optim.Adam(model.parameters(), lr=args.lr)
# criterion = nn.CrossEntropyLoss()
outer_opt, scheduler = argparser_opt_scheduler(model, self.args)
# criterion = nn.CrossEntropyLoss()
self.set_trainer(model)
# criterion = argparser_criterion(args)
# a. get some clean data
logging.info("We use clean train data, the original paper use clean test data.")
transforms_list = []
transforms_list.append(transforms.Resize((args.input_height, args.input_width)))
transforms_list.append(transforms.ToTensor())
transforms_list.append(get_dataset_normalization(args.dataset))
tran = transforms.Compose(transforms_list)
train_tran = get_transform(self.args.dataset, *([self.args.input_height,self.args.input_width]) , train = True)
clean_dataset = prepro_cls_DatasetBD_v2(self.result['clean_train'].wrapped_dataset)
data_all_length = len(clean_dataset)
ran_idx = choose_index(self.args, data_all_length)
log_index = self.args.log + 'index.txt'
np.savetxt(log_index, ran_idx, fmt='%d')
clean_dataset.subset(ran_idx)
data_set_without_tran = clean_dataset
data_set_o = self.result['clean_train']
data_set_o.wrapped_dataset = data_set_without_tran
data_set_o.wrap_img_transform = train_tran
# data_set_o = prepro_cls_DatasetBD_v2(
# full_dataset_without_transform=data_set,
# poison_idx=np.zeros(len(data_set)), # one-hot to determine which image may take bd_transform
# bd_image_pre_transform=None,
# bd_label_pre_transform=None,
# ori_image_transform_in_loading=train_tran,
# ori_label_transform_in_loading=None,
# add_details_in_preprocess=False,
# )
data_loader = torch.utils.data.DataLoader(data_set_o, batch_size=self.args.batch_size, num_workers=self.args.num_workers, shuffle=True, pin_memory=args.pin_memory)
trainloader = data_loader
test_tran = get_transform(self.args.dataset, *([self.args.input_height,self.args.input_width]) , train = False)
data_bd_testset = self.result['bd_test']
data_bd_testset.wrap_img_transform = test_tran
data_bd_loader = torch.utils.data.DataLoader(data_bd_testset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,drop_last=False, shuffle=True,pin_memory=args.pin_memory)
data_clean_testset = self.result['clean_test']
data_clean_testset.wrap_img_transform = test_tran
data_clean_loader = torch.utils.data.DataLoader(data_clean_testset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,drop_last=False, shuffle=True,pin_memory=args.pin_memory)
# self.trainer.train_with_test_each_epoch(
# train_data = trainloader,
# test_data = data_clean_loader,
# adv_test_data = data_bd_loader,
# end_epoch_num = self.args.epochs,
# criterion = criterion,
# optimizer = optimizer,
# scheduler = scheduler,
# device = self.args.device,
# frequency_save = self.args.frequency_save,
# save_folder_path = self.args.checkpoint_save,
# save_prefix = 'defense',
# continue_training_path = None,
# )
# test_result(args,data_clean_loader,data_bd_loader,0,model,criterion)
### define the inner loss L2
def loss_inner(perturb, model_params):
### TODO: cpu training and multiprocessing
images = images_list[0].to(args.device)
labels = labels_list[0].long().to(args.device)
#per_img = torch.clamp(images+perturb[0],min=0,max=1)
per_img = images+perturb[0]
per_logits = model.forward(per_img)
loss = F.cross_entropy(per_logits, labels, reduction='none')
loss_regu = torch.mean(-loss) +0.001*torch.pow(torch.norm(perturb[0]),2)
return loss_regu
### define the outer loss L1
def loss_outer(perturb, model_params):
### TODO: cpu training and multiprocessing
portion = 0.01
images, labels = images_list[batchnum].to(args.device), labels_list[batchnum].long().to(args.device)
patching = torch.zeros_like(images, device='cuda')
number = images.shape[0]
rand_idx = random.sample(list(np.arange(number)),int(number*portion))
patching[rand_idx] = perturb[0]
#unlearn_imgs = torch.clamp(images+patching,min=0,max=1)
unlearn_imgs = images+patching
logits = model(unlearn_imgs)
criterion = nn.CrossEntropyLoss()
loss = criterion(logits, labels)
return loss
images_list, labels_list = [], []
for index, (images, labels, original_index, poison_indicator, original_targets) in enumerate(trainloader):
images_list.append(images)
labels_list.append(labels)
inner_opt = GradientDescent(loss_inner, 0.1)
train_loss_list = []
train_mix_acc_list = []
train_clean_acc_list = []
train_asr_list = []
train_ra_list = []
clean_test_loss_list = []
bd_test_loss_list = []
ra_test_loss_list = []
test_acc_list = []
test_asr_list = []
test_ra_list = []
# b. unlearn the backdoor model by the pertubation
logging.info("=> Conducting Defence..")
model.eval()
agg = Metric_Aggregator()
for round in range(args.n_rounds):
# batch_pert = torch.zeros_like(data_clean_testset[0][:1], requires_grad=True, device=args.device)
batch_pert = torch.zeros([1,args.input_channel,args.input_height,args.input_width], requires_grad=True, device=args.device)
batch_opt = torch.optim.SGD(params=[batch_pert],lr=10)
for images, labels, original_index, poison_indicator, original_targets in trainloader:
images = images.to(args.device)
ori_lab = torch.argmax(model.forward(images),axis = 1).long()
# per_logits = model.forward(torch.clamp(images+batch_pert,min=0,max=1))
per_logits = model.forward(images+batch_pert)
loss = F.cross_entropy(per_logits, ori_lab, reduction='mean')
loss_regu = torch.mean(-loss) +0.001*torch.pow(torch.norm(batch_pert),2)
batch_opt.zero_grad()
loss_regu.backward(retain_graph = True)
batch_opt.step()
#l2-ball
# pert = batch_pert * min(1, 10 / torch.norm(batch_pert))
pert = batch_pert
#unlearn step
for batchnum in range(len(images_list)):
outer_opt.zero_grad()
fixed_point(pert, list(model.parameters()), args.K, inner_opt, loss_outer)
outer_opt.step()
clean_test_loss_avg_over_batch, \
bd_test_loss_avg_over_batch, \
ra_test_loss_avg_over_batch, \
test_acc, \
test_asr, \
test_ra = self.eval_step(
model,
data_clean_loader,
data_bd_loader,
args,
)
agg({
"epoch": round,
"clean_test_loss_avg_over_batch": clean_test_loss_avg_over_batch,
"bd_test_loss_avg_over_batch": bd_test_loss_avg_over_batch,
"ra_test_loss_avg_over_batch": ra_test_loss_avg_over_batch,
"test_acc": test_acc,
"test_asr": test_asr,
"test_ra": test_ra,
})
clean_test_loss_list.append(clean_test_loss_avg_over_batch)
bd_test_loss_list.append(bd_test_loss_avg_over_batch)
ra_test_loss_list.append(ra_test_loss_avg_over_batch)
test_acc_list.append(test_acc)
test_asr_list.append(test_asr)
test_ra_list.append(test_ra)
general_plot_for_epoch(
{
"Test C-Acc": test_acc_list,
"Test ASR": test_asr_list,
"Test RA": test_ra_list,
},
save_path=f"{args.save_path}i-bau_acc_like_metric_plots.png",
ylabel="percentage",
)
general_plot_for_epoch(
{
"Test Clean Loss": clean_test_loss_list,
"Test Backdoor Loss": bd_test_loss_list,
"Test RA Loss": ra_test_loss_list,
},
save_path=f"{args.save_path}i-bau_loss_metric_plots.png",
ylabel="percentage",
)
agg.to_dataframe().to_csv(f"{args.save_path}i-bau_df.csv")
agg.summary().to_csv(f"{args.save_path}i-bau_df_summary.csv")
# self.trainer.train_with_test_each_epoch_on_mix(
# trainloader,
# data_clean_loader,
# data_bd_loader,
# args.epochs,
# criterion=criterion,
# optimizer=optimizer,
# scheduler=scheduler,
# device=self.device,
# frequency_save=args.frequency_save,
# save_folder_path=args.save_path,
# save_prefix='i-bau',
# amp=args.amp,
# prefetch=args.prefetch,
# prefetch_transform_attr_name="ori_image_transform_in_loading", # since we use the preprocess_bd_dataset
# non_blocking=args.non_blocking,
# )
result = {}
result['model'] = model
save_defense_result(
model_name=args.model,
num_classes=args.num_classes,
model=model.cpu().state_dict(),
save_path=args.save_path,
)
return result
def eval_step(
self,
netC,
clean_test_dataloader,
bd_test_dataloader,
args,
):
clean_metrics, clean_epoch_predict_list, clean_epoch_label_list = given_dataloader_test(
netC,
clean_test_dataloader,
criterion=torch.nn.CrossEntropyLoss(),
non_blocking=args.non_blocking,
device=self.device,
verbose=0,
)
clean_test_loss_avg_over_batch = clean_metrics['test_loss_avg_over_batch']
test_acc = clean_metrics['test_acc']
bd_metrics, bd_epoch_predict_list, bd_epoch_label_list = given_dataloader_test(
netC,
bd_test_dataloader,
criterion=torch.nn.CrossEntropyLoss(),
non_blocking=args.non_blocking,
device=self.args.device,
verbose=0,
)
bd_test_loss_avg_over_batch = bd_metrics['test_loss_avg_over_batch']
test_asr = bd_metrics['test_acc']
bd_test_dataloader.dataset.wrapped_dataset.getitem_all_switch = True # change to return the original label instead
ra_metrics, ra_epoch_predict_list, ra_epoch_label_list = given_dataloader_test(
netC,
bd_test_dataloader,
criterion=torch.nn.CrossEntropyLoss(),
non_blocking=args.non_blocking,
device=self.args.device,
verbose=0,
)
ra_test_loss_avg_over_batch = ra_metrics['test_loss_avg_over_batch']
test_ra = ra_metrics['test_acc']
bd_test_dataloader.dataset.wrapped_dataset.getitem_all_switch = False # switch back
return clean_test_loss_avg_over_batch, \
bd_test_loss_avg_over_batch, \
ra_test_loss_avg_over_batch, \
test_acc, \
test_asr, \
test_ra
def defense(self,result_file):
self.set_result(result_file)
self.set_logger()
result = self.mitigation()
return result
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=sys.argv[0])
i_bau.add_arguments(parser)
args = parser.parse_args()
i_bau_method = i_bau(args)
if "result_file" not in args.__dict__:
args.result_file = 'defense_test_badnet'
elif args.result_file is None:
args.result_file = 'defense_test_badnet'
result = i_bau_method.defense(args.result_file)