-
Notifications
You must be signed in to change notification settings - Fork 71
/
beatrix.py
548 lines (468 loc) · 22.5 KB
/
beatrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
'''
The Beatrix Resurrections: Robust Backdoor Detection via Gram Matrices
This file is modified based on the following source:
link : https://github.com/wanlunsec/Beatrix/blob/master/defenses/Beatrix/Beatrix.py
The detection method is called Beatrix.
@article{ma2022beatrix,
title={The" Beatrix''Resurrections: Robust Backdoor Detection via Gram Matrices},
author={Ma, Wanlun and Wang, Derui and Sun, Ruoxi and Xue, Minhui and Wen, Sheng and Xiang, Yang},
journal={arXiv preprint arXiv:2209.11715},
year={2022}}
basic sturcture for defense method:
1. basic setting: args
2. attack result(model, train data, test data)
3. Beatrix detection:
a. extract features of clean samples.
b. extract features of poisoned samples.
c. analyze features by Gram Matrices.
d. measure deviations and compute the threshold.
e. detect poisoned samples by threshold.
4. compute TPR and FPR
'''
import argparse
import os,sys
import numpy as np
import torch
import torch.nn as nn
sys.path.append('../')
sys.path.append(os.getcwd())
from sklearn.utils import shuffle
from pprint import pformat
import yaml
import logging
import time
from typing import Any, Dict, List, Optional, Tuple, TYPE_CHECKING
from defense.base import defense
import scipy
from utils.aggregate_block.train_settings_generate import argparser_criterion, argparser_opt_scheduler
from utils.trainer_cls import PureCleanModelTrainer
from utils.aggregate_block.fix_random import fix_random
from utils.aggregate_block.model_trainer_generate import generate_cls_model
from utils.log_assist import get_git_info
from utils.aggregate_block.dataset_and_transform_generate import get_input_shape, get_num_classes, get_transform
from utils.save_load_attack import load_attack_result, save_defense_result
from utils.nCHW_nHWC import *
import torch.nn.functional as F
import tqdm
import heapq
from PIL import Image
from utils.bd_dataset_v2 import dataset_wrapper_with_transform,xy_iter, prepro_cls_DatasetBD_v2
from utils.trainer_cls import Metric_Aggregator, PureCleanModelTrainer, all_acc, general_plot_for_epoch, given_dataloader_test
from collections import Counter
import copy
from torch.utils.data import DataLoader
from sklearn.metrics import confusion_matrix
import csv
from sklearn import metrics
def cal(true, pred):
TN, FP, FN, TP = confusion_matrix(true, pred).ravel()
return TN, FP, FN, TP
def metrix(TN, FP, FN, TP):
TPR = TP/(TP+FN)
FPR = FP/(FP+TN)
precision = TP/(TP+FP)
acc = (TP+TN)/(TN+FP+FN+TP)
return TPR, FPR, precision, acc
def threshold_determine(clean_feature_target, ood_detection):
test_deviations_list = []
step = 5
for i in range(step):
index_mask = np.ones((len(clean_feature_target),))
index_mask[i*int(len(clean_feature_target)//step):(i+1)*int(len(clean_feature_target)//step)] = 0
clean_feature_target_train= clean_feature_target[np.where(index_mask == 1)]
clean_feature_target_test = clean_feature_target[np.where(index_mask == 0)]
ood_detection.train(in_data=[clean_feature_target_train],)
test_deviations = ood_detection.get_deviations_([clean_feature_target_test])
test_deviations_list.append(test_deviations)
test_deviations = np.concatenate(test_deviations_list,0)
test_deviations_sort = np.sort(test_deviations,0)
percentile_95 = test_deviations_sort[int(len(test_deviations_sort)*0.95)][0]
percentile_99 = test_deviations_sort[int(len(test_deviations_sort)*0.99)][0]
return percentile_95, percentile_99
def gaussian_kernel(x1, x2, kernel_mul=2.0, kernel_num=5, fix_sigma=0, mean_sigma=0):
x1_sample_size = x1.shape[0]
x2_sample_size = x2.shape[0]
x1_tile_shape = []
x2_tile_shape = []
norm_shape = []
for i in range(len(x1.shape) + 1):
if i == 1:
x1_tile_shape.append(x2_sample_size)
else:
x1_tile_shape.append(1)
if i == 0:
x2_tile_shape.append(x1_sample_size)
else:
x2_tile_shape.append(1)
if not (i == 0 or i == 1):
norm_shape.append(i)
tile_x1 = torch.unsqueeze(x1, 1).repeat(x1_tile_shape)
tile_x2 = torch.unsqueeze(x2, 0).repeat(x2_tile_shape)
L2_distance = torch.square(tile_x1 - tile_x2).sum(dim=norm_shape)
if fix_sigma:
bandwidth = fix_sigma
elif mean_sigma:
bandwidth = torch.mean(L2_distance)
else:
bandwidth = torch.median(L2_distance.reshape(L2_distance.shape[0],-1))
bandwidth /= kernel_mul ** (kernel_num // 2)
bandwidth_list = [bandwidth * (kernel_mul ** i) for i in range(kernel_num)]
print(bandwidth_list)
kernel_val = [torch.exp(-L2_distance / bandwidth_temp) for bandwidth_temp in bandwidth_list]
return sum(kernel_val)
def kmmd_dist(x1, x2):
X_total = torch.cat([x1,x2],0)
Gram_matrix = gaussian_kernel(X_total,X_total,kernel_mul=2.0, kernel_num=2, fix_sigma=0, mean_sigma=0)
n = int(x1.shape[0])
m = int(x2.shape[0])
x1x1 = Gram_matrix[:n, :n]
x2x2 = Gram_matrix[n:, n:]
x1x2 = Gram_matrix[:n, n:]
diff = torch.mean(x1x1) + torch.mean(x2x2) - 2 * torch.mean(x1x2)
diff = (m*n)/(m+n)*diff
return diff.cpu().numpy()
class Feature_Correlations:
def __init__(self,POWER_list, mode='mad'):
self.power = POWER_list
self.mode = mode
def train(self, in_data):
self.in_data = in_data
if 'mad' in self.mode:
self.medians, self.mads = self.get_median_mad(self.in_data)
self.mins, self.maxs = self.minmax_mad()
def minmax_mad(self):
mins = []
maxs = []
for L, mm in enumerate(zip(self.medians,self.mads)):
medians, mads = mm[0], mm[1]
if L==len(mins):
mins.append([None]*len(self.power))
maxs.append([None]*len(self.power))
for p, P in enumerate(self.power):
mins[L][p] = medians[p]-mads[p]*10
maxs[L][p] = medians[p]+mads[p]*10
return mins, maxs
def G_p(self, ob, p):
temp = ob.detach()
temp = temp.reshape(temp.shape[0],temp.shape[1],-1)
temp = ((torch.matmul(temp,temp.transpose(dim0=2,dim1=1))))
temp = temp.triu()
temp = temp.sign()*torch.abs(temp)**(1/p)
temp = temp.reshape(temp.shape[0],-1)
self.num_feature = temp.shape[-1]/2
return temp
def get_median_mad(self, feat_list):
medians = []
mads = []
for L,feat_L in enumerate(feat_list):
if L==len(medians):
medians.append([None]*len(self.power))
mads.append([None]*len(self.power))
for p,P in enumerate(self.power):
g_p = self.G_p(feat_L,P)
current_median = g_p.median(dim=0,keepdim=True)[0]
current_mad = torch.abs(g_p - current_median).median(dim=0,keepdim=True)[0]
medians[L][p] = current_median
mads[L][p] = current_mad
return medians, mads
def get_deviations_(self, feat_list):
deviations = []
batch_deviations = []
for L,feat_L in enumerate(feat_list):
dev = 0
for p,P in enumerate(self.power):
g_p = self.G_p(feat_L,P)
dev += (F.relu(self.mins[L][p]-g_p)/torch.abs(self.mins[L][p]+10**-6)).sum(dim=1,keepdim=True)
dev += (F.relu(g_p-self.maxs[L][p])/torch.abs(self.maxs[L][p]+10**-6)).sum(dim=1,keepdim=True)
batch_deviations.append(dev.cpu().detach().numpy())
batch_deviations = np.concatenate(batch_deviations,axis=1)
deviations.append(batch_deviations)
deviations = np.concatenate(deviations,axis=0) /self.num_feature /len(self.power)
return deviations
def get_deviations(self, feat_list):
deviations = []
batch_deviations = []
for L,feat_L in enumerate(feat_list):
dev = 0
for p,P in enumerate(self.power):
g_p = self.G_p(feat_L,P)
dev += torch.sum(torch.abs(g_p-self.medians[L][p])/(self.mads[L][p]+1e-6),dim=1,keepdim=True)
batch_deviations.append(dev.cpu().detach().numpy())
batch_deviations = np.concatenate(batch_deviations,axis=1)
deviations.append(batch_deviations)
deviations = np.concatenate(deviations,axis=0)/self.num_feature /len(self.power)
return deviations
class LayerActivations:
def __init__(self, model,args):
self.args = args
self.model = model
self.model.eval()
self.build_hook()
def build_hook(self):
module_dict = dict(self.model.named_modules())
target_layer = module_dict[args.target_layer]
self.hook = target_layer.register_forward_hook(self.hook_fn)
def hook_fn(self, module, input, output):
self.features = input[0]
# self.features = output
def remove_hook(self):
self.hook.remove()
def run_hook(self,x):
self.model(x)
# self.remove_hook()
return self.features
class beatrix(defense):
def __init__(self,args):
with open(args.yaml_path, 'r') as f:
defaults = yaml.safe_load(f)
defaults.update({k:v for k,v in args.__dict__.items() if v is not None})
args.__dict__ = defaults
args.terminal_info = sys.argv
args.num_classes = get_num_classes(args.dataset)
args.input_height, args.input_width, args.input_channel = get_input_shape(args.dataset)
args.img_size = (args.input_height, args.input_width, args.input_channel)
args.dataset_path = f"{args.dataset_path}/{args.dataset}"
self.args = args
if 'result_file' in args.__dict__ :
if args.result_file is not None:
self.set_result(args.result_file)
def add_arguments(parser):
parser.add_argument('--device', type=str, help='cuda, cpu')
parser.add_argument("-pm","--pin_memory", type=lambda x: str(x) in ['True', 'true', '1'], help = "dataloader pin_memory")
parser.add_argument("-nb","--non_blocking", type=lambda x: str(x) in ['True', 'true', '1'], help = ".to(), set the non_blocking = ?")
parser.add_argument("-pf", '--prefetch', type=lambda x: str(x) in ['True', 'true', '1'], help='use prefetch')
parser.add_argument('--amp', default = False, type=lambda x: str(x) in ['True','true','1'])
parser.add_argument('--checkpoint_load', type=str, help='the location of load model')
parser.add_argument('--checkpoint_save', type=str, help='the location of checkpoint where model is saved')
parser.add_argument('--log', type=str, help='the location of log')
parser.add_argument("--dataset_path", type=str, help='the location of data')
parser.add_argument('--dataset', type=str, help='mnist, cifar10, cifar100, gtrsb, tiny')
parser.add_argument('--result_file', type=str, help='the location of result')
parser.add_argument('--epochs', type=int)
parser.add_argument('--batch_size', type=int)
parser.add_argument("--num_workers", type=float)
parser.add_argument('--lr', type=float)
parser.add_argument('--lr_scheduler', type=str, help='the scheduler of lr')
parser.add_argument('--steplr_stepsize', type=int)
parser.add_argument('--steplr_gamma', type=float)
parser.add_argument('--steplr_milestones', type=list)
parser.add_argument('--model', type=str, help='resnet18')
parser.add_argument('--client_optimizer', type=int)
parser.add_argument('--sgd_momentum', type=float)
parser.add_argument('--wd', type=float, help='weight decay of sgd')
parser.add_argument('--frequency_save', type=int,
help=' frequency_save, 0 is never')
parser.add_argument('--random_seed', type=int, help='random seed')
parser.add_argument('--yaml_path', type=str, default="./config/detection/beatrix/cifar10.yaml", help='the path of yaml')
parser.add_argument('--clean_sample_num', type=int)
parser.add_argument('--target_layer', type=str)
def set_result(self, result_file):
attack_file = 'record/' + result_file
save_path = 'record/' + result_file + '/detection/beatrix_pretrain/'
if not (os.path.exists(save_path)):
os.makedirs(save_path)
self.args.save_path = save_path
if self.args.checkpoint_save is None:
self.args.checkpoint_save = save_path + 'detection_info/'
if not (os.path.exists(self.args.checkpoint_save)):
os.makedirs(self.args.checkpoint_save)
if self.args.log is None:
self.args.log = save_path + 'log/'
if not (os.path.exists(self.args.log)):
os.makedirs(self.args.log)
self.result = load_attack_result(attack_file + '/attack_result.pt')
def set_trainer(self, model):
self.trainer = PureCleanModelTrainer(
model = model,
)
def set_logger(self):
args = self.args
logFormatter = logging.Formatter(
fmt='%(asctime)s [%(levelname)-8s] [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d:%H:%M:%S',
)
logger = logging.getLogger()
fileHandler = logging.FileHandler(args.log + '/' + time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime()) + '.log')
fileHandler.setFormatter(logFormatter)
logger.addHandler(fileHandler)
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(logFormatter)
logger.addHandler(consoleHandler)
logger.setLevel(logging.INFO)
logging.info(pformat(args.__dict__))
try:
logging.info(pformat(get_git_info()))
except:
logging.info('Getting git info fails.')
def set_devices(self):
self.device = self.args.device
def get_feature_predict(self, dataset, model, intermedia_feature):
model.eval()
data_loader = DataLoader(dataset, self.args.batch_size, shuffle=False)
features = []
preds_label = []
for i, (input, label) in enumerate(data_loader):
input = input.to(self.args.device)
label = label.to(self.args.device)
features.append(intermedia_feature.run_hook(input).detach().cpu())
output = model(input)
preds_label.append(torch.argmax(output, 1).detach().cpu())
preds_label = torch.cat(preds_label,axis=0)
features = torch.cat(features,axis=0)
return features, preds_label
def filtering(self):
start = time.perf_counter()
self.set_devices()
fix_random(self.args.random_seed)
### a. load model, bd train data and transforms
model = generate_cls_model(self.args.model,self.args.num_classes)
model.load_state_dict(self.result['model'])
if "," in self.device:
model = torch.nn.DataParallel(
model,
device_ids=[int(i) for i in self.args.device[5:].split(",")] # eg. "cuda:2,3,7" -> [2,3,7]
)
self.args.device = f'cuda:{model.device_ids[0]}'
model.to(self.args.device)
model.eval()
else:
model.to(self.args.device)
model.eval()
test_tran = get_transform(self.args.dataset, *([self.args.input_height,self.args.input_width]) , train = False)
intermedia_feature = LayerActivations(model.to(self.args.device),self.args)
bd_train_dataset = self.result['bd_train'].wrapped_dataset
pindex = np.where(np.array(bd_train_dataset.poison_indicator) == 1)[0]
clean_test_dataset = self.result['clean_test'].wrapped_dataset
### b. find a clean sample from test dataset
images = []
labels = []
for img, label in clean_test_dataset:
images.append(img)
labels.append(label)
test_dataset = xy_iter(images, labels,transform=test_tran)
data_clean_loader = DataLoader(test_dataset, batch_size=self.args.batch_size,drop_last=False, shuffle=False,pin_memory=False)
result = []
with torch.no_grad():
for batch_idx, (input, label) in enumerate(data_clean_loader):
input, label = input.to(self.args.device), label.to(self.args.device)
outputs = model(input)
_, predicted = outputs.max(1)
result.append(predicted.cpu().numpy())
result = np.concatenate(result, axis=0)
labels = result
class_idx_whole = []
num = int(self.args.clean_sample_num / self.args.num_classes)
if num == 0:
num = 1
for i in range(self.args.num_classes):
class_idx_whole.append(np.random.choice(np.where(np.array(labels)==i)[0], num))
class_idx_whole = np.concatenate(class_idx_whole, axis=0)
image_c = [images[i] for i in class_idx_whole]
label_c = [labels[i] for i in class_idx_whole]
## c. get clean feature and pred label
clean_dataset = xy_iter(image_c, label_c,transform=test_tran)
clean_features, clean_preditions = self.get_feature_predict(clean_dataset, model, intermedia_feature)
(clean_features, clean_preditions) = shuffle(clean_features, clean_preditions)
## d. use gram-matrix OOD detection
self.order_list = [1,2,3,4,5,6,7,8]
ood_detection = Feature_Correlations(POWER_list=self.order_list,mode='mad')
## e. load training data with poison samples
images_poison = []
labels_poison = []
for img, label, _,_,_ in bd_train_dataset:
images_poison.append(img)
labels_poison.append(label)
## f. get training feature and pred label
train_dataset = xy_iter(images_poison, labels_poison,transform=test_tran)
train_features, train_preditions = self.get_feature_predict(train_dataset, model, intermedia_feature)
# (train_features, train_preditions) = shuffle(train_features, train_preditions)
threshold_list = []
suspect_index_95 = []
suspect_index_99 = []
J_t = []
for test_target_label in range(args.num_classes):
print(f'*****class:{test_target_label}*****')
clean_feature_defend = clean_features[np.where(clean_preditions==test_target_label)]
threshold_95, threshold_99 = threshold_determine(clean_feature_defend, ood_detection)
threshold_list.append([test_target_label,threshold_95, threshold_99])
ood_detection.train(in_data=[clean_feature_defend])
class_idx_current = np.where(train_preditions==test_target_label)[0]
class_feature_test = train_features[class_idx_current]
class_test_deviations = ood_detection.get_deviations_([class_feature_test])
ood_label_95 = np.where(class_test_deviations > threshold_95)[0]
ood_label_99 = np.where(class_test_deviations > threshold_99)[0]
suspect_index_95.append(class_idx_current[ood_label_95])
suspect_index_99.append(class_idx_current[ood_label_99])
### find target label start###
ood_label_95 = np.where(class_test_deviations > threshold_95, 1, 0).squeeze()
ood_label_99 = np.where(class_test_deviations > threshold_99, 1, 0).squeeze()
clean_feature_group = class_feature_test[np.where(ood_label_95==0)]
bd_feature_group = class_feature_test[np.where(ood_label_95==1)]
clean_feature_flat = torch.mean(clean_feature_group,dim=(2,3))
bd_feature_flat = torch.mean(bd_feature_group,dim=(2,3))
if bd_feature_flat.shape[0] < 1:
kmmd = np.array([0.0])
else:
kmmd = kmmd_dist(clean_feature_flat[:500], bd_feature_flat[:500])
print(f'KMMD:{kmmd.item()}.')
J_t.append(kmmd.item())
J_t = np.asarray(J_t)
J_t_median = np.median(J_t)
J_MAD = np.median(np.abs(J_t - J_t_median))
J_star = np.abs(J_t - J_t_median)/1.4826/(J_MAD+1e-6)
flag_list = []
for i,J_star_i in enumerate(J_star):
if J_star_i>np.exp(2):
flag_list.append([i,J_star_i])
logging.info("Flagged label list: {}".format(",".join(["{}: {}".format(y_label, J_s) for y_label, J_s in flag_list])))
### find target label end###
suspect_index_95 = np.concatenate(suspect_index_95, axis=0)
true_index = np.zeros(len(images_poison))
for i in range(len(true_index)):
if i in pindex:
true_index[i] = 1
if len(suspect_index_95)==0:
tn = len(true_index) - np.sum(true_index)
fp = np.sum(true_index)
fn = 0
tp = 0
f = open(self.args.save_path + '/detection_info.csv', 'a', encoding='utf-8')
csv_write = csv.writer(f)
csv_write.writerow(['record', 'TN','FP','FN','TP','TPR','FPR', 'target'])
csv_write.writerow([args.result_file, tn,fp,fn,tp, 0,0, 'None'])
f.close()
else:
findex_95 = np.zeros(len(images_poison))
for i in range(len(findex_95)):
if i in suspect_index_95:
findex_95[i] = 1
tn, fp, fn, tp = cal(true_index, findex_95)
TPR, FPR, precision, acc = metrix(tn, fp, fn, tp)
new_TP = tp
new_FN = fn*9
new_FP = fp*1
precision = new_TP / (new_TP + new_FP) if new_TP + new_FP != 0 else 0
recall = new_TP / (new_TP + new_FN) if new_TP + new_FN != 0 else 0
fw1 = 2*(precision * recall)/ (precision + recall) if precision + recall != 0 else 0
end = time.perf_counter()
time_miniute = (end-start)/60
f = open(self.args.save_path + '/detection_info.csv', 'a', encoding='utf-8')
csv_write = csv.writer(f)
csv_write.writerow(['record', 'TN','FP','FN','TP','TPR','FPR', 'target'])
csv_write.writerow([args.result_file, tn, fp, fn, tp, TPR, FPR, [i for i,j in flag_list]])
f.close()
def detection(self,result_file):
self.set_result(result_file)
self.set_logger()
result = self.filtering()
return result
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=sys.argv[0])
beatrix.add_arguments(parser)
args = parser.parse_args()
beatrix_method = beatrix(args)
if "result_file" not in args.__dict__:
args.result_file = 'defense_test_badnet'
elif args.result_file is None:
args.result_file = 'defense_test_badnet'
result = beatrix_method.detection(args.result_file)