-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain_cityscapes.py
165 lines (138 loc) · 5.87 KB
/
train_cityscapes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import mxnet as mx
import random
from mxnet.gluon.data.vision import transforms
from functools import partial
from gluoncv.utils import LRScheduler
from easydict import EasyDict as edict
from albumentations import (
Compose, HorizontalFlip, ShiftScaleRotate, PadIfNeeded, RandomCrop,
RGBShift, RandomBrightness, RandomContrast
)
from adaptis.engine.trainer import AdaptISTrainer, init_proposals_head
from adaptis.model.cityscapes.models import get_cityscapes_model
from adaptis.model.losses import NormalizedFocalLossSigmoid, NormalizedFocalLossSoftmax, AdaptISProposalsLossIoU
from adaptis.model.metrics import AdaptiveIoU
from adaptis.data.cityscapes import CityscapesDataset
from adaptis.utils.exp import init_experiment
from adaptis.utils.log import logger
def add_exp_args(parser):
parser.add_argument('--dataset-path', type=str, help='Path to the dataset')
return parser
def init_model():
model_cfg = edict()
model_cfg.syncbn = True
model_cfg.crop_size = (400, 720)
model_cfg.input_normalization = {
'mean': [.485, .456, .406],
'std': [.229, .224, .225]
}
model_cfg.input_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(model_cfg.input_normalization['mean'],
model_cfg.input_normalization['std']),
])
if args.ngpus > 1 and model_cfg.syncbn:
norm_layer = partial(mx.gluon.contrib.nn.SyncBatchNorm, num_devices=args.ngpus)
else:
norm_layer = mx.gluon.nn.BatchNorm
model = get_cityscapes_model(num_classes=19, norm_layer=norm_layer,
backbone='resnet50')
model.initialize(mx.init.Xavier(rnd_type='gaussian', magnitude=2), ctx=mx.cpu(0))
model.feature_extractor.load_pretrained_weights()
return model, model_cfg
def train(model, model_cfg, args, train_proposals, start_epoch=0):
args.val_batch_size = args.batch_size
args.input_normalization = model_cfg.input_normalization
crop_size = model_cfg.crop_size
loss_cfg = edict()
loss_cfg.instance_loss = NormalizedFocalLossSigmoid(alpha=0.25, gamma=2)
loss_cfg.instance_loss_weight = 1.0 if not train_proposals else 0.0
if not train_proposals:
num_epochs = 250
num_points = 6
loss_cfg.segmentation_loss = NormalizedFocalLossSoftmax(ignore_label=-1, gamma=1)
loss_cfg.segmentation_loss_weight = 0.75
else:
num_epochs = 8
num_points = 48
loss_cfg.proposals_loss = AdaptISProposalsLossIoU(args.batch_size)
loss_cfg.proposals_loss_weight = 1.0
train_augmentator = Compose([
HorizontalFlip(),
ShiftScaleRotate(shift_limit=0.03, scale_limit=0,
rotate_limit=(-3, 3), border_mode=0, p=0.75),
PadIfNeeded(min_height=crop_size[0], min_width=crop_size[1], border_mode=0),
RandomCrop(*crop_size),
RandomBrightness(limit=(-0.25, 0.25), p=0.75),
RandomContrast(limit=(-0.15, 0.4), p=0.75),
RGBShift(r_shift_limit=10, g_shift_limit=10, b_shift_limit=10, p=0.75)
], p=1.0)
val_augmentator = Compose([
PadIfNeeded(min_height=crop_size[0], min_width=crop_size[1], border_mode=0),
RandomCrop(*crop_size)
], p=1.0)
def scale_func(image_shape):
return random.uniform(0.85, 1.15)
trainset = CityscapesDataset(
args.dataset_path,
split='train',
num_points=num_points,
augmentator=train_augmentator,
with_segmentation=True,
points_from_one_object=train_proposals,
input_transform=model_cfg.input_transform,
min_object_area=80,
sample_ignore_object_prob=0.025,
keep_background_prob=0.05,
image_rescale=scale_func,
use_jpeg=False
)
valset = CityscapesDataset(
args.dataset_path,
split='test',
augmentator=val_augmentator,
num_points=num_points,
with_segmentation=True,
points_from_one_object=train_proposals,
input_transform=model_cfg.input_transform,
min_object_area=80,
image_rescale=scale_func,
use_jpeg=False
)
if not train_proposals:
optimizer_params = {
'learning_rate': 0.01,
'momentum': 0.9, 'wd': 1e-4
}
lr_scheduler = partial(LRScheduler, mode='poly', baselr=optimizer_params['learning_rate'],
nepochs=num_epochs)
else:
optimizer_params = {
'learning_rate': 5e-4,
'beta1': 0.9, 'beta2': 0.999, 'epsilon': 1e-8
}
lr_scheduler = partial(LRScheduler, mode='cosine',
baselr=optimizer_params['learning_rate'],
nepochs=num_epochs)
trainer = AdaptISTrainer(args, model, model_cfg, loss_cfg,
trainset, valset,
optimizer='sgd' if not train_proposals else 'adam',
optimizer_params=optimizer_params,
lr_scheduler=lr_scheduler,
checkpoint_interval=40 if not train_proposals else 2,
image_dump_interval=100 if not train_proposals else -1,
train_proposals=train_proposals,
hybridize_model=not train_proposals,
metrics=[AdaptiveIoU()])
logger.info(f'Starting Epoch: {start_epoch}')
logger.info(f'Total Epochs: {num_epochs}')
for epoch in range(start_epoch, num_epochs):
trainer.training(epoch)
trainer.validation(epoch)
if __name__ == '__main__':
args = init_experiment('cityscapes', add_exp_args, script_path=__file__)
model, model_cfg = init_model()
train(model, model_cfg, args, train_proposals=False,
start_epoch=args.start_epoch)
init_proposals_head(model, args.ctx)
train(model, model_cfg, args, train_proposals=True)