-
Notifications
You must be signed in to change notification settings - Fork 0
/
5-Recognition.py
99 lines (89 loc) · 3.12 KB
/
5-Recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import cv2
from datetime import date
from datetime import datetime
import pandas as pd
from decimal import Decimal
#defining a function which would help in transferring the name , id , time of entry and exit into an excel sheet
def markattendance(Name):
with open('Dataforattendance.csv','r+') as f:
myDatalist = f.readlines()
namelist=[]
for line in myDatalist:
entry=line.split(',')
namelist.append(entry[0])
current_date = date.today()
now = datetime.now()
current_time = now.strftime("%H:%M:%S")
timestring=current_time
pt = datetime.strptime(timestring,'%H:%M:%S')
total_seconds = pt.second + pt.minute*60 + pt.hour*3600
f.writelines(f'\n{id},{Name},{current_date},{now},{total_seconds}')
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('trainer/trainer.yml')
cascadePath = "haarcascade/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath)
font = cv2.FONT_HERSHEY_SIMPLEX
# Initialize and start realtime video capture
cam = cv2.VideoCapture(0)
cam.set(3, 640) # set video widht
cam.set(4, 480) # set video height
# Define min window size to be recognized as a face
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4)
while True:
ret, img =cam.read()
img = cv2.flip(img, 1)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor = 1.2,
minNeighbors = 5,
minSize = (int(minW), int(minH)),
)
for(x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2)
id, confidence = recognizer.predict(gray[y:y+h,x:x+w])
# If confidence is less them 100 ==> "0" : perfect match
if (confidence < 100):
Check1 = pd.read_csv("RegisterDetails.csv")
Name_List=Check1.Name
N=len(Name_List)
i=0
while(i<=N):
if(i==id):
Name=Name_List[i]
break
i=i+1
i1=Name
confidence = " {0}%".format(round(100-confidence))
else:
i1= "unknown"
confidence = " {0}%".format(round(100-confidence))
cv2.putText(
img,
str(i1),
(x+5,y-5),
font,
1,
(255,255,255),
2
)
cv2.putText(
img,
str(confidence),
(x+5,y+h-5),
font,
1,
(255,255,0),
1
)
cv2.imshow('camera',img)
k = cv2.waitKey(10) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
# Do a bit of cleanup
print("\n [INFO] Exiting Program and cleanup stuff")
cam.release()
cv2.destroyAllWindows()
#Transfering the data into an excel sheet for attendance
markattendance(Name)