Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

loss nan #17

Open
Hiwyl opened this issue Sep 12, 2020 · 3 comments
Open

loss nan #17

Hiwyl opened this issue Sep 12, 2020 · 3 comments

Comments

@Hiwyl
Copy link

Hiwyl commented Sep 12, 2020

image

@zf020114
Copy link

zf020114 commented Oct 1, 2020

作者你好,这是一个惊艳的工作,单阶段anchor free的算法的精度竟然可以达到52.1.我对您的工作十分感兴趣。我想试一下算法的效果。我使用了自己制作的数据集,数据集只有一类。使用了你的默认配文件。我一共尝试了reppointv2-x101-dcn,和reppointv2-x101.在这些配置文件中我只是更改了学习率为0.00125,图像分辨率为1024*1024.我还尝试了不改变图像分辨率,不改变学习率,在你的coco的与训练模型上finetune。等等的尝试。但是这些配置文件更改后训练loss均是nan。我不知道是哪里出了问题。
具体配置文件如下所示:
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(1024, 768), (1024, 1024)],
multiscale_mode='range',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='LoadRPDV2Annotations'),
dict(type='RPDV2FormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_sem_map', 'gt_sem_weights'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(768, 768),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=1,
workers_per_gpu=4,
train=dict(
type='CocoDataset',
ann_file=
'/media/zf/D/Dataset/bridge_768_add5/annotations/instances_train2017.json',
img_prefix='/media/zf/D/Dataset/bridge_768_add5/train2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(1024, 768), (1024, 1024)],
multiscale_mode='range',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='LoadRPDV2Annotations'),
dict(type='RPDV2FormatBundle'),
dict(
type='Collect',
keys=[
'img', 'gt_bboxes', 'gt_labels', 'gt_sem_map',
'gt_sem_weights'
])
]),
val=dict(
type='CocoDataset',
ann_file=
'/media/zf/D/Dataset/bridge_768_add5/annotations/instances_val2017.json',
img_prefix='/media/zf/D/Dataset/bridge_768_add5/val2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(768, 768),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='CocoDataset',
ann_file=
'/media/zf/D/Dataset/bridge_768_add5/annotations/instances_val2017.json',
img_prefix='/media/zf/D/Dataset/bridge_768_add5/val2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(768, 768),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]))
evaluation = dict(interval=1, metric='bbox')
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[16, 22])
total_epochs = 24
checkpoint_config = dict(interval=1)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = '/home/zf/RepPointsV2/reppoints_v2_x101_fpn_dconv_c3-c5_giou_mstrain_2x_coco-3d418239.pth'
resume_from = None
workflow = [('train', 1)]
norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
model = dict(
type='RepPointsV2Detector',
pretrained=
'/home/zf/RepPointsV2/reppoints_v2_x101_fpn_dconv_c3-c5_giou_mstrain_2x_coco-3d418239.pth',
backbone=dict(
type='ResNeXt',
depth=101,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
groups=64,
base_width=4,
dcn=dict(type='DCNv2', deformable_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, True, True, True),
with_cp=True),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_input',
num_outs=5,
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)),
bbox_head=dict(
type='RepPointsV2Head',
num_classes=80,
in_channels=256,
feat_channels=256,
point_feat_channels=256,
stacked_convs=3,
shared_stacked_convs=1,
first_kernel_size=3,
kernel_size=1,
corner_dim=64,
num_points=9,
gradient_mul=0.1,
point_strides=[8, 16, 32, 64, 128],
point_base_scale=4,
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox_init=dict(type='GIoULoss', loss_weight=1.0),
loss_bbox_refine=dict(type='GIoULoss', loss_weight=2.0),
loss_heatmap=dict(
type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=0.25),
loss_offset=dict(
type='SmoothL1Loss', beta=0.1111111111111111, loss_weight=1.0),
loss_sem=dict(
type='SEPFocalLoss', gamma=2.0, alpha=0.25, loss_weight=0.1),
transform_method='exact_minmax'))
train_cfg = dict(
init=dict(
assigner=dict(type='PointAssignerV2', scale=4, pos_num=1),
allowed_border=-1,
pos_weight=-1,
debug=False),
heatmap=dict(
assigner=dict(
type='PointHMAssigner', gaussian_bump=True, gaussian_iou=0.7),
allowed_border=-1,
pos_weight=-1,
debug=False),
refine=dict(
assigner=dict(type='ATSSAssigner', topk=9),
allowed_border=-1,
pos_weight=-1,
debug=False))
test_cfg = dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_thr=0.6),
max_per_img=100)
work_dir = './work_dirs/reppoints_v2_x101_fpn_dconv_c3-c5_giou_mstrain_2x_bridge'
gpu_ids = range(0, 1)

非常愿意接受您的指导。

@zf020114
Copy link

zf020114 commented Oct 1, 2020

训练日志如下:
2020-09-27 14:53:46,457 - mmdet - INFO - Environment info:

sys.platform: linux
Python: 3.7.8 | packaged by conda-forge | (default, Jul 31 2020, 02:25:08) [GCC 7.5.0]
CUDA available: True
CUDA_HOME: /usr/local/cuda-10.0
NVCC: Cuda compilation tools, release 10.0, V10.0.130
GPU 0: GeForce GTX 1060
GCC: gcc (Ubuntu 6.5.0-2ubuntu1~18.04) 6.5.0 20181026
PyTorch: 1.4.0
PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • Intel(R) Math Kernel Library Version 2020.0.1 Product Build 20200208 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v0.21.1 (Git Hash 7d2fd500bc78936d1d648ca713b901012f470dbc)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • NNPACK is enabled
  • CUDA Runtime 10.0
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
  • CuDNN 7.6.3
  • Magma 2.5.1
  • Build settings: BLAS=MKL, BUILD_NAMEDTENSOR=OFF, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -fopenmp -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Wno-stringop-overflow, DISABLE_NUMA=1, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF,

TorchVision: 0.5.0
OpenCV: 4.4.0
MMCV: 0.6.2
MMDetection: 2.2.0+unknown
MMDetection Compiler: GCC 6.5
MMDetection CUDA Compiler: 10.0

2020-09-27 14:53:46,457 - mmdet - INFO - Distributed training: False
2020-09-27 14:53:47,792 - mmdet - INFO - Config:
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(1024, 768), (1024, 1024)],
multiscale_mode='range',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='LoadRPDV2Annotations'),
dict(type='RPDV2FormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_sem_map', 'gt_sem_weights'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(768, 768),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=1,
workers_per_gpu=4,
train=dict(
type='CocoDataset',
ann_file=
'/media/zf/D/Dataset/bridge_768_add5/annotations/instances_train2017.json',
img_prefix='/media/zf/D/Dataset/bridge_768_add5/train2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(1024, 768), (1024, 1024)],
multiscale_mode='range',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='LoadRPDV2Annotations'),
dict(type='RPDV2FormatBundle'),
dict(
type='Collect',
keys=[
'img', 'gt_bboxes', 'gt_labels', 'gt_sem_map',
'gt_sem_weights'
])
]),
val=dict(
type='CocoDataset',
ann_file=
'/media/zf/D/Dataset/bridge_768_add5/annotations/instances_val2017.json',
img_prefix='/media/zf/D/Dataset/bridge_768_add5/val2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(768, 768),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='CocoDataset',
ann_file=
'/media/zf/D/Dataset/bridge_768_add5/annotations/instances_val2017.json',
img_prefix='/media/zf/D/Dataset/bridge_768_add5/val2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(768, 768),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]))
evaluation = dict(interval=1, metric='bbox')
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[16, 22])
total_epochs = 24
checkpoint_config = dict(interval=1)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = '/home/zf/RepPointsV2/reppoints_v2_x101_fpn_dconv_c3-c5_giou_mstrain_2x_coco-3d418239.pth'
resume_from = None
workflow = [('train', 1)]
norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
model = dict(
type='RepPointsV2Detector',
pretrained=
'/home/zf/RepPointsV2/reppoints_v2_x101_fpn_dconv_c3-c5_giou_mstrain_2x_coco-3d418239.pth',
backbone=dict(
type='ResNeXt',
depth=101,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
groups=64,
base_width=4,
dcn=dict(type='DCNv2', deformable_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, True, True, True),
with_cp=True),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_input',
num_outs=5,
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)),
bbox_head=dict(
type='RepPointsV2Head',
num_classes=80,
in_channels=256,
feat_channels=256,
point_feat_channels=256,
stacked_convs=3,
shared_stacked_convs=1,
first_kernel_size=3,
kernel_size=1,
corner_dim=64,
num_points=9,
gradient_mul=0.1,
point_strides=[8, 16, 32, 64, 128],
point_base_scale=4,
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox_init=dict(type='GIoULoss', loss_weight=1.0),
loss_bbox_refine=dict(type='GIoULoss', loss_weight=2.0),
loss_heatmap=dict(
type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=0.25),
loss_offset=dict(
type='SmoothL1Loss', beta=0.1111111111111111, loss_weight=1.0),
loss_sem=dict(
type='SEPFocalLoss', gamma=2.0, alpha=0.25, loss_weight=0.1),
transform_method='exact_minmax'))
train_cfg = dict(
init=dict(
assigner=dict(type='PointAssignerV2', scale=4, pos_num=1),
allowed_border=-1,
pos_weight=-1,
debug=False),
heatmap=dict(
assigner=dict(
type='PointHMAssigner', gaussian_bump=True, gaussian_iou=0.7),
allowed_border=-1,
pos_weight=-1,
debug=False),
refine=dict(
assigner=dict(type='ATSSAssigner', topk=9),
allowed_border=-1,
pos_weight=-1,
debug=False))
test_cfg = dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_thr=0.6),
max_per_img=100)
work_dir = './work_dirs/reppoints_v2_x101_fpn_dconv_c3-c5_giou_mstrain_2x_bridge'
gpu_ids = range(0, 1)

2020-09-27 14:53:49,775 - mmdet - INFO - load model from: /home/zf/RepPointsV2/reppoints_v2_x101_fpn_dconv_c3-c5_giou_mstrain_2x_coco-3d418239.pth
2020-09-27 14:53:50,068 - mmdet - WARNING - The model and loaded state dict do not match exactly

unexpected key in source state_dict: backbone.conv1.weight, backbone.bn1.weight, backbone.bn1.bias, backbone.bn1.running_mean, backbone.bn1.running_var, backbone.bn1.num_batches_tracked, backbone.layer1.0.conv1.weight, backbone.layer1.0.bn1.weight, backbone.layer1.0.bn1.bias, backbone.layer1.0.bn1.running_mean, backbone.layer1.0.bn1.running_var, backbone.layer1.0.bn1.num_batches_tracked, backbone.layer1.0.conv2.weight, backbone.layer1.0.bn2.weight, backbone.layer1.0.bn2.bias, backbone.layer1.0.bn2.running_mean, backbone.layer1.0.bn2.running_var, backbone.layer1.0.bn2.num_batches_tracked, backbone.layer1.0.conv3.weight, backbone.layer1.0.bn3.weight, backbone.layer1.0.bn3.bias, backbone.layer1.0.bn3.running_mean, backbone.layer1.0.bn3.running_var, backbone.layer1.0.bn3.num_batches_tracked, backbone.layer1.0.downsample.0.weight, backbone.layer1.0.downsample.1.weight, backbone.layer1.0.downsample.1.bias, backbone.layer1.0.downsample.1.running_mean, backbone.layer1.0.downsample.1.running_var, backbone.layer1.0.downsample.1.num_batches_tracked, backbone.layer1.1.conv1.weight, backbone.layer1.1.bn1.weight, backbone.layer1.1.bn1.bias, backbone.layer1.1.bn1.running_mean, backbone.layer1.1.bn1.running_var, backbone.layer1.1.bn1.num_batches_tracked, backbone.layer1.1.conv2.weight, backbone.layer1.1.bn2.weight, backbone.layer1.1.bn2.bias, backbone.layer1.1.bn2.running_mean, backbone.layer1.1.bn2.running_var, backbone.layer1.1.bn2.num_batches_tracked, backbone.layer1.1.conv3.weight, backbone.layer1.1.bn3.weight, backbone.layer1.1.bn3.bias, backbone.layer1.1.bn3.running_mean, backbone.layer1.1.bn3.running_var, backbone.layer1.1.bn3.num_batches_tracked, backbone.layer1.2.conv1.weight, backbone.layer1.2.bn1.weight, backbone.layer1.2.bn1.bias, backbone.layer1.2.bn1.running_mean, backbone.layer1.2.bn1.running_var, backbone.layer1.2.bn1.num_batches_tracked, backbone.layer1.2.conv2.weight, backbone.layer1.2.bn2.weight, backbone.layer1.2.bn2.bias, backbone.layer1.2.bn2.running_mean, backbone.layer1.2.bn2.running_var, backbone.layer1.2.bn2.num_batches_tracked, backbone.layer1.2.conv3.weight, backbone.layer1.2.bn3.weight, backbone.layer1.2.bn3.bias, backbone.layer1.2.bn3.running_mean, backbone.layer1.2.bn3.running_var, backbone.layer1.2.bn3.num_batches_tracked, backbone.layer2.0.conv1.weight, backbone.layer2.0.bn1.weight, backbone.layer2.0.bn1.bias, backbone.layer2.0.bn1.running_mean, backbone.layer2.0.bn1.running_var, backbone.layer2.0.bn1.num_batches_tracked, backbone.layer2.0.conv2.weight, backbone.layer2.0.conv2.conv_offset.weight, backbone.layer2.0.conv2.conv_offset.bias, backbone.layer2.0.bn2.weight, backbone.layer2.0.bn2.bias, backbone.layer2.0.bn2.running_mean, backbone.layer2.0.bn2.running_var, backbone.layer2.0.bn2.num_batches_tracked, backbone.layer2.0.conv3.weight, backbone.layer2.0.bn3.weight, backbone.layer2.0.bn3.bias, backbone.layer2.0.bn3.running_mean, backbone.layer2.0.bn3.running_var, backbone.layer2.0.bn3.num_batches_tracked, backbone.layer2.0.downsample.0.weight, backbone.layer2.0.downsample.1.weight, backbone.layer2.0.downsample.1.bias, backbone.layer2.0.downsample.1.running_mean, backbone.layer2.0.downsample.1.running_var, backbone.layer2.0.downsample.1.num_batches_tracked, backbone.layer2.1.conv1.weight, backbone.layer2.1.bn1.weight, backbone.layer2.1.bn1.bias, backbone.layer2.1.bn1.running_mean, backbone.layer2.1.bn1.running_var, backbone.layer2.1.bn1.num_batches_tracked, backbone.layer2.1.conv2.weight, backbone.layer2.1.conv2.conv_offset.weight, backbone.layer2.1.conv2.conv_offset.bias, backbone.layer2.1.bn2.weight, backbone.layer2.1.bn2.bias, backbone.layer2.1.bn2.running_mean, backbone.layer2.1.bn2.running_var, backbone.layer2.1.bn2.num_batches_tracked, backbone.layer2.1.conv3.weight, backbone.layer2.1.bn3.weight, backbone.layer2.1.bn3.bias, backbone.layer2.1.bn3.running_mean, backbone.layer2.1.bn3.running_var, backbone.layer2.1.bn3.num_batches_tracked, backbone.layer2.2.conv1.weight, backbone.layer2.2.bn1.weight, backbone.layer2.2.bn1.bias, backbone.layer2.2.bn1.running_mean, backbone.layer2.2.bn1.running_var, backbone.layer2.2.bn1.num_batches_tracked, backbone.layer2.2.conv2.weight, backbone.layer2.2.conv2.conv_offset.weight, backbone.layer2.2.conv2.conv_offset.bias, backbone.layer2.2.bn2.weight, backbone.layer2.2.bn2.bias, backbone.layer2.2.bn2.running_mean, backbone.layer2.2.bn2.running_var, backbone.layer2.2.bn2.num_batches_tracked, backbone.layer2.2.conv3.weight, backbone.layer2.2.bn3.weight, backbone.layer2.2.bn3.bias, backbone.layer2.2.bn3.running_mean, backbone.layer2.2.bn3.running_var, backbone.layer2.2.bn3.num_batches_tracked, backbone.layer2.3.conv1.weight, backbone.layer2.3.bn1.weight, backbone.layer2.3.bn1.bias, backbone.layer2.3.bn1.running_mean, backbone.layer2.3.bn1.running_var, backbone.layer2.3.bn1.num_batches_tracked, backbone.layer2.3.conv2.weight, backbone.layer2.3.conv2.conv_offset.weight, backbone.layer2.3.conv2.conv_offset.bias, backbone.layer2.3.bn2.weight, backbone.layer2.3.bn2.bias, backbone.layer2.3.bn2.running_mean, backbone.layer2.3.bn2.running_var, backbone.layer2.3.bn2.num_batches_tracked, backbone.layer2.3.conv3.weight, backbone.layer2.3.bn3.weight, backbone.layer2.3.bn3.bias, backbone.layer2.3.bn3.running_mean, backbone.layer2.3.bn3.running_var, backbone.layer2.3.bn3.num_batches_tracked, backbone.layer3.0.conv1.weight, backbone.layer3.0.bn1.weight, backbone.layer3.0.bn1.bias, backbone.layer3.0.bn1.running_mean, backbone.layer3.0.bn1.running_var, backbone.layer3.0.bn1.num_batches_tracked, backbone.layer3.0.conv2.weight, backbone.layer3.0.conv2.conv_offset.weight, backbone.layer3.0.conv2.conv_offset.bias, backbone.layer3.0.bn2.weight, backbone.layer3.0.bn2.bias, backbone.layer3.0.bn2.running_mean, backbone.layer3.0.bn2.running_var, backbone.layer3.0.bn2.num_batches_tracked, backbone.layer3.0.conv3.weight, backbone.layer3.0.bn3.weight, backbone.layer3.0.bn3.bias, backbone.layer3.0.bn3.running_mean, backbone.layer3.0.bn3.running_var, backbone.layer3.0.bn3.num_batches_tracked, backbone.layer3.0.downsample.0.weight, backbone.layer3.0.downsample.1.weight, backbone.layer3.0.downsample.1.bias, backbone.layer3.0.downsample.1.running_mean, backbone.layer3.0.downsample.1.running_var, backbone.layer3.0.downsample.1.num_batches_tracked, backbone.layer3.1.conv1.weight, backbone.layer3.1.bn1.weight, backbone.layer3.1.bn1.bias, backbone.layer3.1.bn1.running_mean, backbone.layer3.1.bn1.running_var, backbone.layer3.1.bn1.num_batches_tracked, backbone.layer3.1.conv2.weight, backbone.layer3.1.conv2.conv_offset.weight, backbone.layer3.1.conv2.conv_offset.bias, backbone.layer3.1.bn2.weight, backbone.layer3.1.bn2.bias, backbone.layer3.1.bn2.running_mean, backbone.layer3.1.bn2.running_var, backbone.layer3.1.bn2.num_batches_tracked, backbone.layer3.1.conv3.weight, backbone.layer3.1.bn3.weight, backbone.layer3.1.bn3.bias, backbone.layer3.1.bn3.running_mean, backbone.layer3.1.bn3.running_var, backbone.layer3.1.bn3.num_batches_tracked, backbone.layer3.2.conv1.weight, backbone.layer3.2.bn1.weight, backbone.layer3.2.bn1.bias, backbone.layer3.2.bn1.running_mean, backbone.layer3.2.bn1.running_var, backbone.layer3.2.bn1.num_batches_tracked, backbone.layer3.2.conv2.weight, backbone.layer3.2.conv2.conv_offset.weight, backbone.layer3.2.conv2.conv_offset.bias, backbone.layer3.2.bn2.weight, backbone.layer3.2.bn2.bias, backbone.layer3.2.bn2.running_mean, backbone.layer3.2.bn2.running_var, backbone.layer3.2.bn2.num_batches_tracked, backbone.layer3.2.conv3.weight, backbone.layer3.2.bn3.weight, backbone.layer3.2.bn3.bias, backbone.layer3.2.bn3.running_mean, backbone.layer3.2.bn3.running_var, backbone.layer3.2.bn3.num_batches_tracked, backbone.layer3.3.conv1.weight, backbone.layer3.3.bn1.weight, backbone.layer3.3.bn1.bias, backbone.layer3.3.bn1.running_mean, backbone.layer3.3.bn1.running_var, backbone.layer3.3.bn1.num_batches_tracked, backbone.layer3.3.conv2.weight, backbone.layer3.3.conv2.conv_offset.weight, backbone.layer3.3.conv2.conv_offset.bias, backbone.layer3.3.bn2.weight, backbone.layer3.3.bn2.bias, backbone.layer3.3.bn2.running_mean, backbone.layer3.3.bn2.running_var, backbone.layer3.3.bn2.num_batches_tracked, backbone.layer3.3.conv3.weight, backbone.layer3.3.bn3.weight, backbone.layer3.3.bn3.bias, backbone.layer3.3.bn3.running_mean, backbone.layer3.3.bn3.running_var, backbone.layer3.3.bn3.num_batches_tracked, backbone.layer3.4.conv1.weight, backbone.layer3.4.bn1.weight, backbone.layer3.4.bn1.bias, backbone.layer3.4.bn1.running_mean, backbone.layer3.4.bn1.running_var, backbone.layer3.4.bn1.num_batches_tracked, backbone.layer3.4.conv2.weight, backbone.layer3.4.conv2.conv_offset.weight, backbone.layer3.4.conv2.conv_offset.bias, backbone.layer3.4.bn2.weight, backbone.layer3.4.bn2.bias, backbone.layer3.4.bn2.running_mean, backbone.layer3.4.bn2.running_var, backbone.layer3.4.bn2.num_batches_tracked, backbone.layer3.4.conv3.weight, backbone.layer3.4.bn3.weight, backbone.layer3.4.bn3.bias, backbone.layer3.4.bn3.running_mean, backbone.layer3.4.bn3.running_var, backbone.layer3.4.bn3.num_batches_tracked, backbone.layer3.5.conv1.weight, backbone.layer3.5.bn1.weight, backbone.layer3.5.bn1.bias, backbone.layer3.5.bn1.running_mean, backbone.layer3.5.bn1.running_var, backbone.layer3.5.bn1.num_batches_tracked, backbone.layer3.5.conv2.weight, backbone.layer3.5.conv2.conv_offset.weight, backbone.layer3.5.conv2.conv_offset.bias, backbone.layer3.5.bn2.weight, backbone.layer3.5.bn2.bias, backbone.layer3.5.bn2.running_mean, backbone.layer3.5.bn2.running_var, backbone.layer3.5.bn2.num_batches_tracked, backbone.layer3.5.conv3.weight, backbone.layer3.5.bn3.weight, backbone.layer3.5.bn3.bias, backbone.layer3.5.bn3.running_mean, backbone.layer3.5.bn3.running_var, backbone.layer3.5.bn3.num_batches_tracked, backbone.layer3.6.conv1.weight, backbone.layer3.6.bn1.weight, backbone.layer3.6.bn1.bias, backbone.layer3.6.bn1.running_mean, backbone.layer3.6.bn1.running_var, backbone.layer3.6.bn1.num_batches_tracked, backbone.layer3.6.conv2.weight, backbone.layer3.6.conv2.conv_offset.weight, backbone.layer3.6.conv2.conv_offset.bias, backbone.layer3.6.bn2.weight, backbone.layer3.6.bn2.bias, backbone.layer3.6.bn2.running_mean, backbone.layer3.6.bn2.running_var, backbone.layer3.6.bn2.num_batches_tracked, backbone.layer3.6.conv3.weight, backbone.layer3.6.bn3.weight, backbone.layer3.6.bn3.bias, backbone.layer3.6.bn3.running_mean, backbone.layer3.6.bn3.running_var, backbone.layer3.6.bn3.num_batches_tracked, backbone.layer3.7.conv1.weight, backbone.layer3.7.bn1.weight, backbone.layer3.7.bn1.bias, backbone.layer3.7.bn1.running_mean, backbone.layer3.7.bn1.running_var, backbone.layer3.7.bn1.num_batches_tracked, backbone.layer3.7.conv2.weight, backbone.layer3.7.conv2.conv_offset.weight, backbone.layer3.7.conv2.conv_offset.bias, backbone.layer3.7.bn2.weight, backbone.layer3.7.bn2.bias, backbone.layer3.7.bn2.running_mean, backbone.layer3.7.bn2.running_var, backbone.layer3.7.bn2.num_batches_tracked, backbone.layer3.7.conv3.weight, backbone.layer3.7.bn3.weight, backbone.layer3.7.bn3.bias, backbone.layer3.7.bn3.running_mean, backbone.layer3.7.bn3.running_var, backbone.layer3.7.bn3.num_batches_tracked, backbone.layer3.8.conv1.weight, backbone.layer3.8.bn1.weight, backbone.layer3.8.bn1.bias, backbone.layer3.8.bn1.running_mean, backbone.layer3.8.bn1.running_var, backbone.layer3.8.bn1.num_batches_tracked, backbone.layer3.8.conv2.weight, backbone.layer3.8.conv2.conv_offset.weight, backbone.layer3.8.conv2.conv_offset.bias, backbone.layer3.8.bn2.weight, backbone.layer3.8.bn2.bias, backbone.layer3.8.bn2.running_mean, backbone.layer3.8.bn2.running_var, backbone.layer3.8.bn2.num_batches_tracked, backbone.layer3.8.conv3.weight, backbone.layer3.8.bn3.weight, backbone.layer3.8.bn3.bias, backbone.layer3.8.bn3.running_mean, backbone.layer3.8.bn3.running_var, backbone.layer3.8.bn3.num_batches_tracked, backbone.layer3.9.conv1.weight, backbone.layer3.9.bn1.weight, backbone.layer3.9.bn1.bias, backbone.layer3.9.bn1.running_mean, backbone.layer3.9.bn1.running_var, backbone.layer3.9.bn1.num_batches_tracked, backbone.layer3.9.conv2.weight, backbone.layer3.9.conv2.conv_offset.weight, backbone.layer3.9.conv2.conv_offset.bias, backbone.layer3.9.bn2.weight, backbone.layer3.9.bn2.bias, backbone.layer3.9.bn2.running_mean, backbone.layer3.9.bn2.running_var, backbone.layer3.9.bn2.num_batches_tracked, backbone.layer3.9.conv3.weight, backbone.layer3.9.bn3.weight, backbone.layer3.9.bn3.bias, backbone.layer3.9.bn3.running_mean, backbone.layer3.9.bn3.running_var, backbone.layer3.9.bn3.num_batches_tracked, backbone.layer3.10.conv1.weight, backbone.layer3.10.bn1.weight, backbone.layer3.10.bn1.bias, backbone.layer3.10.bn1.running_mean, backbone.layer3.10.bn1.running_var, backbone.layer3.10.bn1.num_batches_tracked, backbone.layer3.10.conv2.weight, backbone.layer3.10.conv2.conv_offset.weight, backbone.layer3.10.conv2.conv_offset.bias, backbone.layer3.10.bn2.weight, backbone.layer3.10.bn2.bias, backbone.layer3.10.bn2.running_mean, backbone.layer3.10.bn2.running_var, backbone.layer3.10.bn2.num_batches_tracked, backbone.layer3.10.conv3.weight, backbone.layer3.10.bn3.weight, backbone.layer3.10.bn3.bias, backbone.layer3.10.bn3.running_mean, backbone.layer3.10.bn3.running_var, backbone.layer3.10.bn3.num_batches_tracked, backbone.layer3.11.conv1.weight, backbone.layer3.11.bn1.weight, backbone.layer3.11.bn1.bias, backbone.layer3.11.bn1.running_mean, backbone.layer3.11.bn1.running_var, backbone.layer3.11.bn1.num_batches_tracked, backbone.layer3.11.conv2.weight, backbone.layer3.11.conv2.conv_offset.weight, backbone.layer3.11.conv2.conv_offset.bias, backbone.layer3.11.bn2.weight, backbone.layer3.11.bn2.bias, backbone.layer3.11.bn2.running_mean, backbone.layer3.11.bn2.running_var, backbone.layer3.11.bn2.num_batches_tracked, backbone.layer3.11.conv3.weight, backbone.layer3.11.bn3.weight, backbone.layer3.11.bn3.bias, backbone.layer3.11.bn3.running_mean, backbone.layer3.11.bn3.running_var, backbone.layer3.11.bn3.num_batches_tracked, backbone.layer3.12.conv1.weight, backbone.layer3.12.bn1.weight, backbone.layer3.12.bn1.bias, backbone.layer3.12.bn1.running_mean, backbone.layer3.12.bn1.running_var, backbone.layer3.12.bn1.num_batches_tracked, backbone.layer3.12.conv2.weight, backbone.layer3.12.conv2.conv_offset.weight, backbone.layer3.12.conv2.conv_offset.bias, backbone.layer3.12.bn2.weight, backbone.layer3.12.bn2.bias, backbone.layer3.12.bn2.running_mean, backbone.layer3.12.bn2.running_var, backbone.layer3.12.bn2.num_batches_tracked, backbone.layer3.12.conv3.weight, backbone.layer3.12.bn3.weight, backbone.layer3.12.bn3.bias, backbone.layer3.12.bn3.running_mean, backbone.layer3.12.bn3.running_var, backbone.layer3.12.bn3.num_batches_tracked, backbone.layer3.13.conv1.weight, backbone.layer3.13.bn1.weight, backbone.layer3.13.bn1.bias, backbone.layer3.13.bn1.running_mean, backbone.layer3.13.bn1.running_var, backbone.layer3.13.bn1.num_batches_tracked, backbone.layer3.13.conv2.weight, backbone.layer3.13.conv2.conv_offset.weight, backbone.layer3.13.conv2.conv_offset.bias, backbone.layer3.13.bn2.weight, backbone.layer3.13.bn2.bias, backbone.layer3.13.bn2.running_mean, backbone.layer3.13.bn2.running_var, backbone.layer3.13.bn2.num_batches_tracked, backbone.layer3.13.conv3.weight, backbone.layer3.13.bn3.weight, backbone.layer3.13.bn3.bias, backbone.layer3.13.bn3.running_mean, backbone.layer3.13.bn3.running_var, backbone.layer3.13.bn3.num_batches_tracked, backbone.layer3.14.conv1.weight, backbone.layer3.14.bn1.weight, backbone.layer3.14.bn1.bias, backbone.layer3.14.bn1.running_mean, backbone.layer3.14.bn1.running_var, backbone.layer3.14.bn1.num_batches_tracked, backbone.layer3.14.conv2.weight, backbone.layer3.14.conv2.conv_offset.weight, backbone.layer3.14.conv2.conv_offset.bias, backbone.layer3.14.bn2.weight, backbone.layer3.14.bn2.bias, backbone.layer3.14.bn2.running_mean, backbone.layer3.14.bn2.running_var, backbone.layer3.14.bn2.num_batches_tracked, backbone.layer3.14.conv3.weight, backbone.layer3.14.bn3.weight, backbone.layer3.14.bn3.bias, backbone.layer3.14.bn3.running_mean, backbone.layer3.14.bn3.running_var, backbone.layer3.14.bn3.num_batches_tracked, backbone.layer3.15.conv1.weight, backbone.layer3.15.bn1.weight, backbone.layer3.15.bn1.bias, backbone.layer3.15.bn1.running_mean, backbone.layer3.15.bn1.running_var, backbone.layer3.15.bn1.num_batches_tracked, backbone.layer3.15.conv2.weight, backbone.layer3.15.conv2.conv_offset.weight, backbone.layer3.15.conv2.conv_offset.bias, backbone.layer3.15.bn2.weight, backbone.layer3.15.bn2.bias, backbone.layer3.15.bn2.running_mean, backbone.layer3.15.bn2.running_var, backbone.layer3.15.bn2.num_batches_tracked, backbone.layer3.15.conv3.weight, backbone.layer3.15.bn3.weight, backbone.layer3.15.bn3.bias, backbone.layer3.15.bn3.running_mean, backbone.layer3.15.bn3.running_var, backbone.layer3.15.bn3.num_batches_tracked, backbone.layer3.16.conv1.weight, backbone.layer3.16.bn1.weight, backbone.layer3.16.bn1.bias, backbone.layer3.16.bn1.running_mean, backbone.layer3.16.bn1.running_var, backbone.layer3.16.bn1.num_batches_tracked, backbone.layer3.16.conv2.weight, backbone.layer3.16.conv2.conv_offset.weight, backbone.layer3.16.conv2.conv_offset.bias, backbone.layer3.16.bn2.weight, backbone.layer3.16.bn2.bias, backbone.layer3.16.bn2.running_mean, backbone.layer3.16.bn2.running_var, backbone.layer3.16.bn2.num_batches_tracked, backbone.layer3.16.conv3.weight, backbone.layer3.16.bn3.weight, backbone.layer3.16.bn3.bias, backbone.layer3.16.bn3.running_mean, backbone.layer3.16.bn3.running_var, backbone.layer3.16.bn3.num_batches_tracked, backbone.layer3.17.conv1.weight, backbone.layer3.17.bn1.weight, backbone.layer3.17.bn1.bias, backbone.layer3.17.bn1.running_mean, backbone.layer3.17.bn1.running_var, backbone.layer3.17.bn1.num_batches_tracked, backbone.layer3.17.conv2.weight, backbone.layer3.17.conv2.conv_offset.weight, backbone.layer3.17.conv2.conv_offset.bias, backbone.layer3.17.bn2.weight, backbone.layer3.17.bn2.bias, backbone.layer3.17.bn2.running_mean, backbone.layer3.17.bn2.running_var, backbone.layer3.17.bn2.num_batches_tracked, backbone.layer3.17.conv3.weight, backbone.layer3.17.bn3.weight, backbone.layer3.17.bn3.bias, backbone.layer3.17.bn3.running_mean, backbone.layer3.17.bn3.running_var, backbone.layer3.17.bn3.num_batches_tracked, backbone.layer3.18.conv1.weight, backbone.layer3.18.bn1.weight, backbone.layer3.18.bn1.bias, backbone.layer3.18.bn1.running_mean, backbone.layer3.18.bn1.running_var, backbone.layer3.18.bn1.num_batches_tracked, backbone.layer3.18.conv2.weight, backbone.layer3.18.conv2.conv_offset.weight, backbone.layer3.18.conv2.conv_offset.bias, backbone.layer3.18.bn2.weight, backbone.layer3.18.bn2.bias, backbone.layer3.18.bn2.running_mean, backbone.layer3.18.bn2.running_var, backbone.layer3.18.bn2.num_batches_tracked, backbone.layer3.18.conv3.weight, backbone.layer3.18.bn3.weight, backbone.layer3.18.bn3.bias, backbone.layer3.18.bn3.running_mean, backbone.layer3.18.bn3.running_var, backbone.layer3.18.bn3.num_batches_tracked, backbone.layer3.19.conv1.weight, backbone.layer3.19.bn1.weight, backbone.layer3.19.bn1.bias, backbone.layer3.19.bn1.running_mean, backbone.layer3.19.bn1.running_var, backbone.layer3.19.bn1.num_batches_tracked, backbone.layer3.19.conv2.weight, backbone.layer3.19.conv2.conv_offset.weight, backbone.layer3.19.conv2.conv_offset.bias, backbone.layer3.19.bn2.weight, backbone.layer3.19.bn2.bias, backbone.layer3.19.bn2.running_mean, backbone.layer3.19.bn2.running_var, backbone.layer3.19.bn2.num_batches_tracked, backbone.layer3.19.conv3.weight, backbone.layer3.19.bn3.weight, backbone.layer3.19.bn3.bias, backbone.layer3.19.bn3.running_mean, backbone.layer3.19.bn3.running_var, backbone.layer3.19.bn3.num_batches_tracked, backbone.layer3.20.conv1.weight, backbone.layer3.20.bn1.weight, backbone.layer3.20.bn1.bias, backbone.layer3.20.bn1.running_mean, backbone.layer3.20.bn1.running_var, backbone.layer3.20.bn1.num_batches_tracked, backbone.layer3.20.conv2.weight, backbone.layer3.20.conv2.conv_offset.weight, backbone.layer3.20.conv2.conv_offset.bias, backbone.layer3.20.bn2.weight, backbone.layer3.20.bn2.bias, backbone.layer3.20.bn2.running_mean, backbone.layer3.20.bn2.running_var, backbone.layer3.20.bn2.num_batches_tracked, backbone.layer3.20.conv3.weight, backbone.layer3.20.bn3.weight, backbone.layer3.20.bn3.bias, backbone.layer3.20.bn3.running_mean, backbone.layer3.20.bn3.running_var, backbone.layer3.20.bn3.num_batches_tracked, backbone.layer3.21.conv1.weight, backbone.layer3.21.bn1.weight, backbone.layer3.21.bn1.bias, backbone.layer3.21.bn1.running_mean, backbone.layer3.21.bn1.running_var, backbone.layer3.21.bn1.num_batches_tracked, backbone.layer3.21.conv2.weight, backbone.layer3.21.conv2.conv_offset.weight, backbone.layer3.21.conv2.conv_offset.bias, backbone.layer3.21.bn2.weight, backbone.layer3.21.bn2.bias, backbone.layer3.21.bn2.running_mean, backbone.layer3.21.bn2.running_var, backbone.layer3.21.bn2.num_batches_tracked, backbone.layer3.21.conv3.weight, backbone.layer3.21.bn3.weight, backbone.layer3.21.bn3.bias, backbone.layer3.21.bn3.running_mean, backbone.layer3.21.bn3.running_var, backbone.layer3.21.bn3.num_batches_tracked, backbone.layer3.22.conv1.weight, backbone.layer3.22.bn1.weight, backbone.layer3.22.bn1.bias, backbone.layer3.22.bn1.running_mean, backbone.layer3.22.bn1.running_var, backbone.layer3.22.bn1.num_batches_tracked, backbone.layer3.22.conv2.weight, backbone.layer3.22.conv2.conv_offset.weight, backbone.layer3.22.conv2.conv_offset.bias, backbone.layer3.22.bn2.weight, backbone.layer3.22.bn2.bias, backbone.layer3.22.bn2.running_mean, backbone.layer3.22.bn2.running_var, backbone.layer3.22.bn2.num_batches_tracked, backbone.layer3.22.conv3.weight, backbone.layer3.22.bn3.weight, backbone.layer3.22.bn3.bias, backbone.layer3.22.bn3.running_mean, backbone.layer3.22.bn3.running_var, backbone.layer3.22.bn3.num_batches_tracked, backbone.layer4.0.conv1.weight, backbone.layer4.0.bn1.weight, backbone.layer4.0.bn1.bias, backbone.layer4.0.bn1.running_mean, backbone.layer4.0.bn1.running_var, backbone.layer4.0.bn1.num_batches_tracked, backbone.layer4.0.conv2.weight, backbone.layer4.0.conv2.conv_offset.weight, backbone.layer4.0.conv2.conv_offset.bias, backbone.layer4.0.bn2.weight, backbone.layer4.0.bn2.bias, backbone.layer4.0.bn2.running_mean, backbone.layer4.0.bn2.running_var, backbone.layer4.0.bn2.num_batches_tracked, backbone.layer4.0.conv3.weight, backbone.layer4.0.bn3.weight, backbone.layer4.0.bn3.bias, backbone.layer4.0.bn3.running_mean, backbone.layer4.0.bn3.running_var, backbone.layer4.0.bn3.num_batches_tracked, backbone.layer4.0.downsample.0.weight, backbone.layer4.0.downsample.1.weight, backbone.layer4.0.downsample.1.bias, backbone.layer4.0.downsample.1.running_mean, backbone.layer4.0.downsample.1.running_var, backbone.layer4.0.downsample.1.num_batches_tracked, backbone.layer4.1.conv1.weight, backbone.layer4.1.bn1.weight, backbone.layer4.1.bn1.bias, backbone.layer4.1.bn1.running_mean, backbone.layer4.1.bn1.running_var, backbone.layer4.1.bn1.num_batches_tracked, backbone.layer4.1.conv2.weight, backbone.layer4.1.conv2.conv_offset.weight, backbone.layer4.1.conv2.conv_offset.bias, backbone.layer4.1.bn2.weight, backbone.layer4.1.bn2.bias, backbone.layer4.1.bn2.running_mean, backbone.layer4.1.bn2.running_var, backbone.layer4.1.bn2.num_batches_tracked, backbone.layer4.1.conv3.weight, backbone.layer4.1.bn3.weight, backbone.layer4.1.bn3.bias, backbone.layer4.1.bn3.running_mean, backbone.layer4.1.bn3.running_var, backbone.layer4.1.bn3.num_batches_tracked, backbone.layer4.2.conv1.weight, backbone.layer4.2.bn1.weight, backbone.layer4.2.bn1.bias, backbone.layer4.2.bn1.running_mean, backbone.layer4.2.bn1.running_var, backbone.layer4.2.bn1.num_batches_tracked, backbone.layer4.2.conv2.weight, backbone.layer4.2.conv2.conv_offset.weight, backbone.layer4.2.conv2.conv_offset.bias, backbone.layer4.2.bn2.weight, backbone.layer4.2.bn2.bias, backbone.layer4.2.bn2.running_mean, backbone.layer4.2.bn2.running_var, backbone.layer4.2.bn2.num_batches_tracked, backbone.layer4.2.conv3.weight, backbone.layer4.2.bn3.weight, backbone.layer4.2.bn3.bias, backbone.layer4.2.bn3.running_mean, backbone.layer4.2.bn3.running_var, backbone.layer4.2.bn3.num_batches_tracked, neck.lateral_convs.0.conv.weight, neck.lateral_convs.0.gn.weight, neck.lateral_convs.0.gn.bias, neck.lateral_convs.1.conv.weight, neck.lateral_convs.1.gn.weight, neck.lateral_convs.1.gn.bias, neck.lateral_convs.2.conv.weight, neck.lateral_convs.2.gn.weight, neck.lateral_convs.2.gn.bias, neck.fpn_convs.0.conv.weight, neck.fpn_convs.0.gn.weight, neck.fpn_convs.0.gn.bias, neck.fpn_convs.1.conv.weight, neck.fpn_convs.1.gn.weight, neck.fpn_convs.1.gn.bias, neck.fpn_convs.2.conv.weight, neck.fpn_convs.2.gn.weight, neck.fpn_convs.2.gn.bias, neck.fpn_convs.3.conv.weight, neck.fpn_convs.3.gn.weight, neck.fpn_convs.3.gn.bias, neck.fpn_convs.4.conv.weight, neck.fpn_convs.4.gn.weight, neck.fpn_convs.4.gn.bias, bbox_head.cls_convs.0.conv.weight, bbox_head.cls_convs.0.gn.weight, bbox_head.cls_convs.0.gn.bias, bbox_head.cls_convs.1.conv.weight, bbox_head.cls_convs.1.gn.weight, bbox_head.cls_convs.1.gn.bias, bbox_head.cls_convs.2.conv.weight, bbox_head.cls_convs.2.gn.weight, bbox_head.cls_convs.2.gn.bias, bbox_head.reg_convs.0.conv.weight, bbox_head.reg_convs.0.gn.weight, bbox_head.reg_convs.0.gn.bias, bbox_head.reg_convs.1.conv.weight, bbox_head.reg_convs.1.gn.weight, bbox_head.reg_convs.1.gn.bias, bbox_head.reg_convs.2.conv.weight, bbox_head.reg_convs.2.gn.weight, bbox_head.reg_convs.2.gn.bias, bbox_head.shared_convs.0.conv.weight, bbox_head.shared_convs.0.gn.weight, bbox_head.shared_convs.0.gn.bias, bbox_head.hem_tl.p1_conv1.conv.weight, bbox_head.hem_tl.p1_conv1.gn.weight, bbox_head.hem_tl.p1_conv1.gn.bias, bbox_head.hem_tl.p2_conv1.conv.weight, bbox_head.hem_tl.p2_conv1.gn.weight, bbox_head.hem_tl.p2_conv1.gn.bias, bbox_head.hem_tl.p_conv1.weight, bbox_head.hem_tl.p_gn1.weight, bbox_head.hem_tl.p_gn1.bias, bbox_head.hem_tl.conv1.weight, bbox_head.hem_tl.gn1.weight, bbox_head.hem_tl.gn1.bias, bbox_head.hem_tl.conv2.conv.weight, bbox_head.hem_tl.conv2.gn.weight, bbox_head.hem_tl.conv2.gn.bias, bbox_head.hem_br.p1_conv1.conv.weight, bbox_head.hem_br.p1_conv1.gn.weight, bbox_head.hem_br.p1_conv1.gn.bias, bbox_head.hem_br.p2_conv1.conv.weight, bbox_head.hem_br.p2_conv1.gn.weight, bbox_head.hem_br.p2_conv1.gn.bias, bbox_head.hem_br.p_conv1.weight, bbox_head.hem_br.p_gn1.weight, bbox_head.hem_br.p_gn1.bias, bbox_head.hem_br.conv1.weight, bbox_head.hem_br.gn1.weight, bbox_head.hem_br.gn1.bias, bbox_head.hem_br.conv2.conv.weight, bbox_head.hem_br.conv2.gn.weight, bbox_head.hem_br.conv2.gn.bias, bbox_head.reppoints_cls_conv.weight, bbox_head.reppoints_cls_out.weight, bbox_head.reppoints_cls_out.bias, bbox_head.reppoints_pts_init_conv.weight, bbox_head.reppoints_pts_init_conv.bias, bbox_head.reppoints_pts_init_out.weight, bbox_head.reppoints_pts_init_out.bias, bbox_head.reppoints_pts_refine_conv.weight, bbox_head.reppoints_pts_refine_out.weight, bbox_head.reppoints_pts_refine_out.bias, bbox_head.reppoints_hem_tl_score_out.weight, bbox_head.reppoints_hem_tl_score_out.bias, bbox_head.reppoints_hem_br_score_out.weight, bbox_head.reppoints_hem_br_score_out.bias, bbox_head.reppoints_hem_tl_offset_out.weight, bbox_head.reppoints_hem_tl_offset_out.bias, bbox_head.reppoints_hem_br_offset_out.weight, bbox_head.reppoints_hem_br_offset_out.bias, bbox_head.reppoints_sem_out.weight, bbox_head.reppoints_sem_out.bias, bbox_head.reppoints_sem_embedding.conv.weight, bbox_head.reppoints_sem_embedding.gn.weight, bbox_head.reppoints_sem_embedding.gn.bias

missing keys in source state_dict: conv1.weight, bn1.weight, bn1.bias, bn1.running_mean, bn1.running_var, layer1.0.conv1.weight, layer1.0.bn1.weight, layer1.0.bn1.bias, layer1.0.bn1.running_mean, layer1.0.bn1.running_var, layer1.0.conv2.weight, layer1.0.bn2.weight, layer1.0.bn2.bias, layer1.0.bn2.running_mean, layer1.0.bn2.running_var, layer1.0.conv3.weight, layer1.0.bn3.weight, layer1.0.bn3.bias, layer1.0.bn3.running_mean, layer1.0.bn3.running_var, layer1.0.downsample.0.weight, layer1.0.downsample.1.weight, layer1.0.downsample.1.bias, layer1.0.downsample.1.running_mean, layer1.0.downsample.1.running_var, layer1.1.conv1.weight, layer1.1.bn1.weight, layer1.1.bn1.bias, layer1.1.bn1.running_mean, layer1.1.bn1.running_var, layer1.1.conv2.weight, layer1.1.bn2.weight, layer1.1.bn2.bias, layer1.1.bn2.running_mean, layer1.1.bn2.running_var, layer1.1.conv3.weight, layer1.1.bn3.weight, layer1.1.bn3.bias, layer1.1.bn3.running_mean, layer1.1.bn3.running_var, layer1.2.conv1.weight, layer1.2.bn1.weight, layer1.2.bn1.bias, layer1.2.bn1.running_mean, layer1.2.bn1.running_var, layer1.2.conv2.weight, layer1.2.bn2.weight, layer1.2.bn2.bias, layer1.2.bn2.running_mean, layer1.2.bn2.running_var, layer1.2.conv3.weight, layer1.2.bn3.weight, layer1.2.bn3.bias, layer1.2.bn3.running_mean, layer1.2.bn3.running_var, layer2.0.conv1.weight, layer2.0.bn1.weight, layer2.0.bn1.bias, layer2.0.bn1.running_mean, layer2.0.bn1.running_var, layer2.0.conv2.weight, layer2.0.conv2.conv_offset.weight, layer2.0.conv2.conv_offset.bias, layer2.0.bn2.weight, layer2.0.bn2.bias, layer2.0.bn2.running_mean, layer2.0.bn2.running_var, layer2.0.conv3.weight, layer2.0.bn3.weight, layer2.0.bn3.bias, layer2.0.bn3.running_mean, layer2.0.bn3.running_var, layer2.0.downsample.0.weight, layer2.0.downsample.1.weight, layer2.0.downsample.1.bias, layer2.0.downsample.1.running_mean, layer2.0.downsample.1.running_var, layer2.1.conv1.weight, layer2.1.bn1.weight, layer2.1.bn1.bias, layer2.1.bn1.running_mean, layer2.1.bn1.running_var, layer2.1.conv2.weight, layer2.1.conv2.conv_offset.weight, layer2.1.conv2.conv_offset.bias, layer2.1.bn2.weight, layer2.1.bn2.bias, layer2.1.bn2.running_mean, layer2.1.bn2.running_var, layer2.1.conv3.weight, layer2.1.bn3.weight, layer2.1.bn3.bias, layer2.1.bn3.running_mean, layer2.1.bn3.running_var, layer2.2.conv1.weight, layer2.2.bn1.weight, layer2.2.bn1.bias, layer2.2.bn1.running_mean, layer2.2.bn1.running_var, layer2.2.conv2.weight, layer2.2.conv2.conv_offset.weight, layer2.2.conv2.conv_offset.bias, layer2.2.bn2.weight, layer2.2.bn2.bias, layer2.2.bn2.running_mean, layer2.2.bn2.running_var, layer2.2.conv3.weight, layer2.2.bn3.weight, layer2.2.bn3.bias, layer2.2.bn3.running_mean, layer2.2.bn3.running_var, layer2.3.conv1.weight, layer2.3.bn1.weight, layer2.3.bn1.bias, layer2.3.bn1.running_mean, layer2.3.bn1.running_var, layer2.3.conv2.weight, layer2.3.conv2.conv_offset.weight, layer2.3.conv2.conv_offset.bias, layer2.3.bn2.weight, layer2.3.bn2.bias, layer2.3.bn2.running_mean, layer2.3.bn2.running_var, layer2.3.conv3.weight, layer2.3.bn3.weight, layer2.3.bn3.bias, layer2.3.bn3.running_mean, layer2.3.bn3.running_var, layer3.0.conv1.weight, layer3.0.bn1.weight, layer3.0.bn1.bias, layer3.0.bn1.running_mean, layer3.0.bn1.running_var, layer3.0.conv2.weight, layer3.0.conv2.conv_offset.weight, layer3.0.conv2.conv_offset.bias, layer3.0.bn2.weight, layer3.0.bn2.bias, layer3.0.bn2.running_mean, layer3.0.bn2.running_var, layer3.0.conv3.weight, layer3.0.bn3.weight, layer3.0.bn3.bias, layer3.0.bn3.running_mean, layer3.0.bn3.running_var, layer3.0.downsample.0.weight, layer3.0.downsample.1.weight, layer3.0.downsample.1.bias, layer3.0.downsample.1.running_mean, layer3.0.downsample.1.running_var, layer3.1.conv1.weight, layer3.1.bn1.weight, layer3.1.bn1.bias, layer3.1.bn1.running_mean, layer3.1.bn1.running_var, layer3.1.conv2.weight, layer3.1.conv2.conv_offset.weight, layer3.1.conv2.conv_offset.bias, layer3.1.bn2.weight, layer3.1.bn2.bias, layer3.1.bn2.running_mean, layer3.1.bn2.running_var, layer3.1.conv3.weight, layer3.1.bn3.weight, layer3.1.bn3.bias, layer3.1.bn3.running_mean, layer3.1.bn3.running_var, layer3.2.conv1.weight, layer3.2.bn1.weight, layer3.2.bn1.bias, layer3.2.bn1.running_mean, layer3.2.bn1.running_var, layer3.2.conv2.weight, layer3.2.conv2.conv_offset.weight, layer3.2.conv2.conv_offset.bias, layer3.2.bn2.weight, layer3.2.bn2.bias, layer3.2.bn2.running_mean, layer3.2.bn2.running_var, layer3.2.conv3.weight, layer3.2.bn3.weight, layer3.2.bn3.bias, layer3.2.bn3.running_mean, layer3.2.bn3.running_var, layer3.3.conv1.weight, layer3.3.bn1.weight, layer3.3.bn1.bias, layer3.3.bn1.running_mean, layer3.3.bn1.running_var, layer3.3.conv2.weight, layer3.3.conv2.conv_offset.weight, layer3.3.conv2.conv_offset.bias, layer3.3.bn2.weight, layer3.3.bn2.bias, layer3.3.bn2.running_mean, layer3.3.bn2.running_var, layer3.3.conv3.weight, layer3.3.bn3.weight, layer3.3.bn3.bias, layer3.3.bn3.running_mean, layer3.3.bn3.running_var, layer3.4.conv1.weight, layer3.4.bn1.weight, layer3.4.bn1.bias, layer3.4.bn1.running_mean, layer3.4.bn1.running_var, layer3.4.conv2.weight, layer3.4.conv2.conv_offset.weight, layer3.4.conv2.conv_offset.bias, layer3.4.bn2.weight, layer3.4.bn2.bias, layer3.4.bn2.running_mean, layer3.4.bn2.running_var, layer3.4.conv3.weight, layer3.4.bn3.weight, layer3.4.bn3.bias, layer3.4.bn3.running_mean, layer3.4.bn3.running_var, layer3.5.conv1.weight, layer3.5.bn1.weight, layer3.5.bn1.bias, layer3.5.bn1.running_mean, layer3.5.bn1.running_var, layer3.5.conv2.weight, layer3.5.conv2.conv_offset.weight, layer3.5.conv2.conv_offset.bias, layer3.5.bn2.weight, layer3.5.bn2.bias, layer3.5.bn2.running_mean, layer3.5.bn2.running_var, layer3.5.conv3.weight, layer3.5.bn3.weight, layer3.5.bn3.bias, layer3.5.bn3.running_mean, layer3.5.bn3.running_var, layer3.6.conv1.weight, layer3.6.bn1.weight, layer3.6.bn1.bias, layer3.6.bn1.running_mean, layer3.6.bn1.running_var, layer3.6.conv2.weight, layer3.6.conv2.conv_offset.weight, layer3.6.conv2.conv_offset.bias, layer3.6.bn2.weight, layer3.6.bn2.bias, layer3.6.bn2.running_mean, layer3.6.bn2.running_var, layer3.6.conv3.weight, layer3.6.bn3.weight, layer3.6.bn3.bias, layer3.6.bn3.running_mean, layer3.6.bn3.running_var, layer3.7.conv1.weight, layer3.7.bn1.weight, layer3.7.bn1.bias, layer3.7.bn1.running_mean, layer3.7.bn1.running_var, layer3.7.conv2.weight, layer3.7.conv2.conv_offset.weight, layer3.7.conv2.conv_offset.bias, layer3.7.bn2.weight, layer3.7.bn2.bias, layer3.7.bn2.running_mean, layer3.7.bn2.running_var, layer3.7.conv3.weight, layer3.7.bn3.weight, layer3.7.bn3.bias, layer3.7.bn3.running_mean, layer3.7.bn3.running_var, layer3.8.conv1.weight, layer3.8.bn1.weight, layer3.8.bn1.bias, layer3.8.bn1.running_mean, layer3.8.bn1.running_var, layer3.8.conv2.weight, layer3.8.conv2.conv_offset.weight, layer3.8.conv2.conv_offset.bias, layer3.8.bn2.weight, layer3.8.bn2.bias, layer3.8.bn2.running_mean, layer3.8.bn2.running_var, layer3.8.conv3.weight, layer3.8.bn3.weight, layer3.8.bn3.bias, layer3.8.bn3.running_mean, layer3.8.bn3.running_var, layer3.9.conv1.weight, layer3.9.bn1.weight, layer3.9.bn1.bias, layer3.9.bn1.running_mean, layer3.9.bn1.running_var, layer3.9.conv2.weight, layer3.9.conv2.conv_offset.weight, layer3.9.conv2.conv_offset.bias, layer3.9.bn2.weight, layer3.9.bn2.bias, layer3.9.bn2.running_mean, layer3.9.bn2.running_var, layer3.9.conv3.weight, layer3.9.bn3.weight, layer3.9.bn3.bias, layer3.9.bn3.running_mean, layer3.9.bn3.running_var, layer3.10.conv1.weight, layer3.10.bn1.weight, layer3.10.bn1.bias, layer3.10.bn1.running_mean, layer3.10.bn1.running_var, layer3.10.conv2.weight, layer3.10.conv2.conv_offset.weight, layer3.10.conv2.conv_offset.bias, layer3.10.bn2.weight, layer3.10.bn2.bias, layer3.10.bn2.running_mean, layer3.10.bn2.running_var, layer3.10.conv3.weight, layer3.10.bn3.weight, layer3.10.bn3.bias, layer3.10.bn3.running_mean, layer3.10.bn3.running_var, layer3.11.conv1.weight, layer3.11.bn1.weight, layer3.11.bn1.bias, layer3.11.bn1.running_mean, layer3.11.bn1.running_var, layer3.11.conv2.weight, layer3.11.conv2.conv_offset.weight, layer3.11.conv2.conv_offset.bias, layer3.11.bn2.weight, layer3.11.bn2.bias, layer3.11.bn2.running_mean, layer3.11.bn2.running_var, layer3.11.conv3.weight, layer3.11.bn3.weight, layer3.11.bn3.bias, layer3.11.bn3.running_mean, layer3.11.bn3.running_var, layer3.12.conv1.weight, layer3.12.bn1.weight, layer3.12.bn1.bias, layer3.12.bn1.running_mean, layer3.12.bn1.running_var, layer3.12.conv2.weight, layer3.12.conv2.conv_offset.weight, layer3.12.conv2.conv_offset.bias, layer3.12.bn2.weight, layer3.12.bn2.bias, layer3.12.bn2.running_mean, layer3.12.bn2.running_var, layer3.12.conv3.weight, layer3.12.bn3.weight, layer3.12.bn3.bias, layer3.12.bn3.running_mean, layer3.12.bn3.running_var, layer3.13.conv1.weight, layer3.13.bn1.weight, layer3.13.bn1.bias, layer3.13.bn1.running_mean, layer3.13.bn1.running_var, layer3.13.conv2.weight, layer3.13.conv2.conv_offset.weight, layer3.13.conv2.conv_offset.bias, layer3.13.bn2.weight, layer3.13.bn2.bias, layer3.13.bn2.running_mean, layer3.13.bn2.running_var, layer3.13.conv3.weight, layer3.13.bn3.weight, layer3.13.bn3.bias, layer3.13.bn3.running_mean, layer3.13.bn3.running_var, layer3.14.conv1.weight, layer3.14.bn1.weight, layer3.14.bn1.bias, layer3.14.bn1.running_mean, layer3.14.bn1.running_var, layer3.14.conv2.weight, layer3.14.conv2.conv_offset.weight, layer3.14.conv2.conv_offset.bias, layer3.14.bn2.weight, layer3.14.bn2.bias, layer3.14.bn2.running_mean, layer3.14.bn2.running_var, layer3.14.conv3.weight, layer3.14.bn3.weight, layer3.14.bn3.bias, layer3.14.bn3.running_mean, layer3.14.bn3.running_var, layer3.15.conv1.weight, layer3.15.bn1.weight, layer3.15.bn1.bias, layer3.15.bn1.running_mean, layer3.15.bn1.running_var, layer3.15.conv2.weight, layer3.15.conv2.conv_offset.weight, layer3.15.conv2.conv_offset.bias, layer3.15.bn2.weight, layer3.15.bn2.bias, layer3.15.bn2.running_mean, layer3.15.bn2.running_var, layer3.15.conv3.weight, layer3.15.bn3.weight, layer3.15.bn3.bias, layer3.15.bn3.running_mean, layer3.15.bn3.running_var, layer3.16.conv1.weight, layer3.16.bn1.weight, layer3.16.bn1.bias, layer3.16.bn1.running_mean, layer3.16.bn1.running_var, layer3.16.conv2.weight, layer3.16.conv2.conv_offset.weight, layer3.16.conv2.conv_offset.bias, layer3.16.bn2.weight, layer3.16.bn2.bias, layer3.16.bn2.running_mean, layer3.16.bn2.running_var, layer3.16.conv3.weight, layer3.16.bn3.weight, layer3.16.bn3.bias, layer3.16.bn3.running_mean, layer3.16.bn3.running_var, layer3.17.conv1.weight, layer3.17.bn1.weight, layer3.17.bn1.bias, layer3.17.bn1.running_mean, layer3.17.bn1.running_var, layer3.17.conv2.weight, layer3.17.conv2.conv_offset.weight, layer3.17.conv2.conv_offset.bias, layer3.17.bn2.weight, layer3.17.bn2.bias, layer3.17.bn2.running_mean, layer3.17.bn2.running_var, layer3.17.conv3.weight, layer3.17.bn3.weight, layer3.17.bn3.bias, layer3.17.bn3.running_mean, layer3.17.bn3.running_var, layer3.18.conv1.weight, layer3.18.bn1.weight, layer3.18.bn1.bias, layer3.18.bn1.running_mean, layer3.18.bn1.running_var, layer3.18.conv2.weight, layer3.18.conv2.conv_offset.weight, layer3.18.conv2.conv_offset.bias, layer3.18.bn2.weight, layer3.18.bn2.bias, layer3.18.bn2.running_mean, layer3.18.bn2.running_var, layer3.18.conv3.weight, layer3.18.bn3.weight, layer3.18.bn3.bias, layer3.18.bn3.running_mean, layer3.18.bn3.running_var, layer3.19.conv1.weight, layer3.19.bn1.weight, layer3.19.bn1.bias, layer3.19.bn1.running_mean, layer3.19.bn1.running_var, layer3.19.conv2.weight, layer3.19.conv2.conv_offset.weight, layer3.19.conv2.conv_offset.bias, layer3.19.bn2.weight, layer3.19.bn2.bias, layer3.19.bn2.running_mean, layer3.19.bn2.running_var, layer3.19.conv3.weight, layer3.19.bn3.weight, layer3.19.bn3.bias, layer3.19.bn3.running_mean, layer3.19.bn3.running_var, layer3.20.conv1.weight, layer3.20.bn1.weight, layer3.20.bn1.bias, layer3.20.bn1.running_mean, layer3.20.bn1.running_var, layer3.20.conv2.weight, layer3.20.conv2.conv_offset.weight, layer3.20.conv2.conv_offset.bias, layer3.20.bn2.weight, layer3.20.bn2.bias, layer3.20.bn2.running_mean, layer3.20.bn2.running_var, layer3.20.conv3.weight, layer3.20.bn3.weight, layer3.20.bn3.bias, layer3.20.bn3.running_mean, layer3.20.bn3.running_var, layer3.21.conv1.weight, layer3.21.bn1.weight, layer3.21.bn1.bias, layer3.21.bn1.running_mean, layer3.21.bn1.running_var, layer3.21.conv2.weight, layer3.21.conv2.conv_offset.weight, layer3.21.conv2.conv_offset.bias, layer3.21.bn2.weight, layer3.21.bn2.bias, layer3.21.bn2.running_mean, layer3.21.bn2.running_var, layer3.21.conv3.weight, layer3.21.bn3.weight, layer3.21.bn3.bias, layer3.21.bn3.running_mean, layer3.21.bn3.running_var, layer3.22.conv1.weight, layer3.22.bn1.weight, layer3.22.bn1.bias, layer3.22.bn1.running_mean, layer3.22.bn1.running_var, layer3.22.conv2.weight, layer3.22.conv2.conv_offset.weight, layer3.22.conv2.conv_offset.bias, layer3.22.bn2.weight, layer3.22.bn2.bias, layer3.22.bn2.running_mean, layer3.22.bn2.running_var, layer3.22.conv3.weight, layer3.22.bn3.weight, layer3.22.bn3.bias, layer3.22.bn3.running_mean, layer3.22.bn3.running_var, layer4.0.conv1.weight, layer4.0.bn1.weight, layer4.0.bn1.bias, layer4.0.bn1.running_mean, layer4.0.bn1.running_var, layer4.0.conv2.weight, layer4.0.conv2.conv_offset.weight, layer4.0.conv2.conv_offset.bias, layer4.0.bn2.weight, layer4.0.bn2.bias, layer4.0.bn2.running_mean, layer4.0.bn2.running_var, layer4.0.conv3.weight, layer4.0.bn3.weight, layer4.0.bn3.bias, layer4.0.bn3.running_mean, layer4.0.bn3.running_var, layer4.0.downsample.0.weight, layer4.0.downsample.1.weight, layer4.0.downsample.1.bias, layer4.0.downsample.1.running_mean, layer4.0.downsample.1.running_var, layer4.1.conv1.weight, layer4.1.bn1.weight, layer4.1.bn1.bias, layer4.1.bn1.running_mean, layer4.1.bn1.running_var, layer4.1.conv2.weight, layer4.1.conv2.conv_offset.weight, layer4.1.conv2.conv_offset.bias, layer4.1.bn2.weight, layer4.1.bn2.bias, layer4.1.bn2.running_mean, layer4.1.bn2.running_var, layer4.1.conv3.weight, layer4.1.bn3.weight, layer4.1.bn3.bias, layer4.1.bn3.running_mean, layer4.1.bn3.running_var, layer4.2.conv1.weight, layer4.2.bn1.weight, layer4.2.bn1.bias, layer4.2.bn1.running_mean, layer4.2.bn1.running_var, layer4.2.conv2.weight, layer4.2.conv2.conv_offset.weight, layer4.2.conv2.conv_offset.bias, layer4.2.bn2.weight, layer4.2.bn2.bias, layer4.2.bn2.running_mean, layer4.2.bn2.running_var, layer4.2.conv3.weight, layer4.2.bn3.weight, layer4.2.bn3.bias, layer4.2.bn3.running_mean, layer4.2.bn3.running_var

2020-09-27 14:53:54,673 - mmdet - INFO - load checkpoint from /home/zf/RepPointsV2/reppoints_v2_x101_fpn_dconv_c3-c5_giou_mstrain_2x_coco-3d418239.pth
2020-09-27 14:53:55,050 - mmdet - INFO - Start running, host: zf@HP, work_dir: /home/zf/RepPointsV2/work_dirs/reppoints_v2_x101_fpn_dconv_c3-c5_giou_mstrain_2x_bridge
2020-09-27 14:53:55,050 - mmdet - INFO - workflow: [('train', 1)], max: 24 epochs
2020-09-27 14:56:54,715 - mmdet - INFO - Epoch [1][50/25903] lr: 9.890e-04, eta: 25 days, 20:23:08, time: 3.593, data_time: 0.050, memory: 3506, loss_cls: 1119.4495, loss_pts_init: nan, loss_pts_refine: nan, loss_heatmap: nan, loss_offset: nan, loss_sem: nan, loss: nan, grad_norm: nan
2020-09-27 15:00:05,128 - mmdet - INFO - Epoch [1][100/25903] lr: 1.988e-03, eta: 26 days, 14:56:07, time: 3.808, data_time: 0.005, memory: 3506, loss_cls: 0.0181, loss_pts_init: nan, loss_pts_refine: nan, loss_heatmap: nan, loss_offset: nan, loss_sem: nan, loss: nan, grad_norm: nan

@azuredsky
Copy link

Hi, guys
you must change mmdet/datasets/coco.py CLASSES = ('your's label here'), then it solved

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants