-
-
Notifications
You must be signed in to change notification settings - Fork 302
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
TypeError: unhashable type: 'numpy.ndarray' #86
Comments
TypeError Traceback (most recent call last) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/scorecardpy/woebin.py in woebin(dt, y, x, var_skip, breaks_list, special_values, stop_limit, count_distr_limit, bin_num_limit, positive, no_cores, print_step, method, ignore_const_cols, ignore_datetime_cols, check_cate_num, replace_blank, save_breaks_list, **kwargs) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/scorecardpy/woebin.py in woebin2(dtm, breaks, spl_val, init_count_distr, count_distr_limit, stop_limit, bin_num_limit, method) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/scorecardpy/woebin.py in woebin2_tree(dtm, init_count_distr, count_distr_limit, stop_limit, bin_num_limit, breaks, spl_val) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/scorecardpy/woebin.py in woebin2_tree_add_1brkp(dtm, initial_binning, count_distr_limit, bestbreaks) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/scorecardpy/woebin.py in total_iv_all_breaks(initial_binning, bestbreaks, dtm_rows) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/groupby/generic.py in aggregate(self, func, engine, engine_kwargs, *args, **kwargs) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/apply.py in agg(self) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/apply.py in agg_dict_like(self) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/apply.py in (.0) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/groupby/generic.py in aggregate(self, func, engine, engine_kwargs, *args, **kwargs) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/groupby/groupby.py in sum(self, numeric_only, min_count, engine, engine_kwargs) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/groupby/groupby.py in _agg_general(self, numeric_only, min_count, alias, npfunc) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/groupby/groupby.py in _cython_agg_general(self, how, alt, numeric_only, min_count) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/internals/base.py in grouped_reduce(self, func, ignore_failures) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/groupby/groupby.py in array_func(values) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/groupby/ops.py in _cython_operation(self, kind, values, how, axis, min_count, **kwargs) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/_libs/properties.pyx in pandas._libs.properties.CachedProperty.get() /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/groupby/ops.py in group_info(self) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/groupby/ops.py in _get_compressed_codes(self) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/groupby/ops.py in codes(self) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/groupby/ops.py in (.0) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/groupby/grouper.py in codes(self) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/_libs/properties.pyx in pandas._libs.properties.CachedProperty.get() /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/groupby/grouper.py in _codes_and_uniques(self) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/algorithms.py in factorize(values, sort, na_sentinel, size_hint) /opt/anaconda3/envs/monedo_scoring_v3_2/lib/python3.8/site-packages/pandas/core/algorithms.py in factorize_array(values, na_sentinel, size_hint, na_value, mask) pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.factorize() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable._unique() TypeError: unhashable type: 'numpy.ndarray' |
Hi, @miche2020 . Downgrade to pandas==1.3.4 may help you. |
Hi everyone!
I have some issues with scorecard my error is TypeError: unhashable type: 'numpy.ndarray' in
woebin.py bins = dict(zip(xs, pool.starmap(woebin2, args)) .
How I can fix this problem?
The text was updated successfully, but these errors were encountered: