-
Notifications
You must be signed in to change notification settings - Fork 3
/
sparse_rnn_core.py
699 lines (603 loc) · 31.1 KB
/
sparse_rnn_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import math
def add_sparse_args(parser):
parser.add_argument('--growth', type=str, default='random', help='Growth mode. Choose from: momentum, random, gradient.')
parser.add_argument('--death', type=str, default='magnitude', help='Death mode / pruning mode. Choose from: magnitude, SET, threshold.')
parser.add_argument('--redistribution', type=str, default='none', help='Redistribution mode. Choose from: momentum, magnitude, nonzeros, or none.')
parser.add_argument('--death-rate', type=float, default=0.50, help='The pruning rate / death rate.')
parser.add_argument('--density', type=float, default=0.33, help='The density of the overall sparse network.')
parser.add_argument('--sparse', action='store_true', help='Enable sparse mode. Default: True.')
parser.add_argument('--sparse_init', type=str, default='uniform', help='sparse initialization')
class CosineDecay(object):
def __init__(self, death_rate, T_max, eta_min=0.005, last_epoch=-1):
self.sgd = optim.SGD(torch.nn.ParameterList([torch.nn.Parameter(torch.zeros(1))]), lr=death_rate)
self.cosine_stepper = torch.optim.lr_scheduler.CosineAnnealingLR(self.sgd, T_max, eta_min, last_epoch)
def step(self):
self.cosine_stepper.step()
def get_dr(self, death_rate):
return self.sgd.param_groups[0]['lr']
class LinearDecay(object):
def __init__(self, death_rate, factor=0.99, frequency=600):
self.factor = factor
self.steps = 0
self.frequency = frequency
def step(self):
self.steps += 1
def get_dr(self, death_rate):
if self.steps > 0 and self.steps % self.frequency == 0:
return death_rate*self.factor
else:
return death_rate
class Masking(object):
def __init__(self, optimizer, death_rate=0.3, growth_death_ratio=1.0, death_rate_decay=None, death_mode='magnitude', growth_mode='momentum', redistribution_mode='momentum', threshold=0.001, model='LSTM'):
growth_modes = ['random', 'momentum', 'momentum_neuron']
if growth_mode not in growth_modes:
print('Growth mode: {0} not supported!'.format(growth_mode))
print('Supported modes are:', str(growth_modes))
self.growth_mode = growth_mode
self.death_mode = death_mode
self.growth_death_ratio = growth_death_ratio
self.redistribution_mode = redistribution_mode
self.death_rate_decay = death_rate_decay
self.model = model
self.masks = {}
self.pruning_rate = {}
self.modules = []
self.names = []
self.optimizer = optimizer
self.adjusted_growth = 0
self.adjustments = []
self.baseline_nonzero = None
self.name2baseline_nonzero = {}
# stats
self.name2variance = {}
self.name2zeros = {}
self.name2nonzeros = {}
self.total_variance = 0
self.total_removed = 0
self.total_zero = 0
self.total_nonzero = 0
self.death_rate = death_rate
self.name2death_rate = {}
self.steps = 0
# lstm stats
if self.model == 'LSTM':
self.gate_num = 4
elif self.model == 'RHN':
self.gate_num = 2
self.gates_mask = {}
self.gates_weight_grad = {}
self.gates_nonzeros = {}
self.gates_zeros = {}
self.gates_weight = {}
self.gate2variance = {}
# global growth/death state
self.threshold = threshold
self.growth_threshold = threshold
self.growth_increment = 0.2
self.increment = 0.2
self.tolerance = 0.02
self.prune_every_k_steps = None
def init(self, mode='uniform', density=0.05):
self.sparsity = density
if mode == 'uniform':
self.baseline_nonzero = 0
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
self.masks[name][:] = (torch.rand(weight.shape) < density).float().data.cuda()
self.baseline_nonzero += weight.numel()*density
self.apply_mask()
elif mode == 'ER':
# initialization used in sparse evolutionary training
total_params = 0
self.baseline_nonzero = 0
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
total_params += weight.numel()
self.baseline_nonzero += weight.numel()*density
target_params = total_params *density
tolerance = 5
current_params = 0
new_nonzeros = 0
epsilon = 10.0
growth_factor = 0.5
# searching for the right epsilon for a specific sparsity level
while not ((current_params+tolerance > target_params) and (current_params-tolerance < target_params)):
new_nonzeros = 0.0
for name, weight in module.named_parameters():
if name not in self.masks: continue
# original SET formulation for fully connected weights: num_weights = epsilon * (noRows + noCols)
# we adapt the same formula for convolutional weights
growth = epsilon*sum(weight.shape)
new_nonzeros += growth
current_params = new_nonzeros
if current_params > target_params:
epsilon *= 1.0 - growth_factor
else:
epsilon *= 1.0 + growth_factor
growth_factor *= 0.95
for name, weight in module.named_parameters():
if name not in self.masks: continue
growth = epsilon*sum(weight.shape)
prob = growth/np.prod(weight.shape)
self.masks[name][:] = (torch.rand(weight.shape) < prob).float().data.cuda()
self.apply_mask()
self.init_death_rate(self.death_rate)
self.print_nonzero_counts()
if 't0' in self.optimizer.param_groups[0]:
# initialize masks for SparseASGD
self.init_optimizer_mask()
def init_death_rate(self, death_rate):
for name in self.masks:
self.name2death_rate[name] = death_rate
def init_optimizer_mask(self):
if self.model == 'LSTM':
self.optimizer.masks[0] = self.masks['encoder.weight'].clone()
self.optimizer.masks[1] = self.masks['rnn.weight_ih_l0'].clone()
self.optimizer.masks[2] = self.masks['rnn.weight_hh_l0'].clone()
self.optimizer.masks[5] = self.masks['rnn.weight_ih_l1'].clone()
self.optimizer.masks[6] = self.masks['rnn.weight_hh_l1'].clone()
self.optimizer.masks[9] = self.masks['decoder.weight'].clone()
elif self.model == 'RHN':
self.optimizer.masks[0] = self.masks['embedding.weight'].clone()
self.optimizer.masks[1] = self.masks['rnns.0.highways.0.W.weight'].clone()
self.optimizer.masks[3] = self.masks['rnns.0.highways.0.R.weight'].clone()
self.optimizer.masks[5] = self.masks['rnns.0.highways.1.R.weight'].clone()
self.optimizer.masks[7] = self.masks['rnns.0.highways.2.R.weight'].clone()
self.optimizer.masks[9] = self.masks['rnns.0.highways.3.R.weight'].clone()
self.optimizer.masks[11] = self.masks['rnns.0.highways.4.R.weight'].clone()
self.optimizer.masks[13] = self.masks['rnns.0.highways.5.R.weight'].clone()
self.optimizer.masks[15] = self.masks['rnns.0.highways.6.R.weight'].clone()
self.optimizer.masks[17] = self.masks['rnns.0.highways.7.R.weight'].clone()
self.optimizer.masks[19] = self.masks['rnns.0.highways.8.R.weight'].clone()
self.optimizer.masks[21] = self.masks['rnns.0.highways.9.R.weight'].clone()
elif self.model == 'ONLSTM':
self.optimizer.masks[0] = self.masks['encoder.weight'].clone()
self.optimizer.masks[1] = self.masks['rnn.cells.0.ih.0.weight'].clone()
self.optimizer.masks[5] = self.masks['rnn.cells.1.ih.0.weight'].clone()
self.optimizer.masks[9] = self.masks['rnn.cells.2.ih.0.weight'].clone()
def at_end_of_epoch(self,epoch):
self.truncate_weights(epoch)
if 't0' in self.optimizer.param_groups[0]:
self.init_optimizer_mask()
self.print_nonzero_counts()
def step(self):
self.optimizer.step()
self.apply_mask()
self.death_rate_decay.step()
for name in self.masks:
self.name2death_rate[name] = self.death_rate_decay.get_dr(self.name2death_rate[name])
self.steps += 1
if self.prune_every_k_steps is not None:
if self.steps % self.prune_every_k_steps == 0:
self.truncate_weights()
self.print_nonzero_counts()
def add_module(self, module, density, sparse_init='enforce_density_per_layer'):
self.modules.append(module)
for name, tensor in module.named_parameters():
self.names.append(name)
self.masks[name] = torch.zeros_like(tensor, dtype=torch.float32, requires_grad=False).cuda()
self.remove_weight_partial_name('bias')
self.remove_type(nn.BatchNorm2d)
self.remove_type(nn.BatchNorm1d)
self.remove_type(nn.PReLU)
self.init(mode=sparse_init, density=density)
def remove_weight(self, name):
if name in self.masks:
print('Removing {0} of size {1} = {2} parameters.'.format(name, self.masks[name].shape, self.masks[name].numel()))
self.masks.pop(name)
def remove_weight_partial_name(self, partial_name, verbose=False):
removed = set()
for name in list(self.masks.keys()):
if partial_name in name:
if verbose:
print('Removing {0}...'.format(name))
removed.add(name)
self.masks.pop(name)
print('Removed {0} layers.'.format(len(removed)))
i = 0
while i < len(self.names):
name = self.names[i]
if name in removed: self.names.pop(i)
else: i += 1
def remove_type(self, nn_type, verbose=False):
for module in self.modules:
for name, module in module.named_modules():
if isinstance(module, nn_type):
self.remove_weight_partial_name(name, verbose=True)
def apply_mask(self):
for module in self.modules:
for name, tensor in module.named_parameters():
if name in self.masks:
tensor.data = tensor.data*self.masks[name]
if 'momentum_buffer' in self.optimizer.state[tensor]:
self.optimizer.state[tensor]['momentum_buffer'] = self.optimizer.state[tensor]['momentum_buffer']*self.masks[name]
def truncate_weights(self, epoch):
self.gather_statistics()
name2regrowth = self.calc_growth_redistribution()
total_nonzero_new = 0
total_removed = 0
if self.death_mode == 'global_magnitude':
total_removed = self.global_magnitude_death()
else:
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
mask = self.masks[name]
# death
if self.death_mode == 'magnitude':
new_mask = self.magnitude_death(mask, weight, name)
elif self.death_mode == 'SET':
new_mask = self.magnitude_and_negativity_death(mask, weight, name)
elif self.death_mode == 'threshold':
new_mask = self.threshold_death(mask, weight, name)
total_removed += self.name2nonzeros[name] - new_mask.sum().item()
self.pruning_rate[name] = (self.name2nonzeros[name] - new_mask.sum().item()) / self.name2nonzeros[name]
print("Name:", name, "pruning_rate", self.pruning_rate[name])
self.masks[name][:] = new_mask
if self.growth_mode == 'global_momentum':
total_nonzero_new = self.global_momentum_growth(total_removed + self.adjusted_growth)
else:
if self.death_mode == 'threshold':
expected_killed = sum(name2regrowth.values())
if total_removed < (1.0-self.tolerance)*expected_killed:
self.threshold *= 2.0
elif total_removed > (1.0+self.tolerance) * expected_killed:
self.threshold *= 0.5
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
new_mask = self.masks[name].data.byte()
if self.death_mode == 'threshold':
total_regrowth = math.floor((total_removed/float(expected_killed))*name2regrowth[name]*self.growth_death_ratio)
elif self.redistribution_mode == 'none':
if name not in self.name2baseline_nonzero:
self.name2baseline_nonzero[name] = self.name2nonzeros[name]
old = self.name2baseline_nonzero[name]
new = new_mask.sum().item()
total_regrowth = int(old-new)
elif self.death_mode == 'global_magnitude':
expected_removed = self.baseline_nonzero*self.name2death_rate[name]
expected_vs_actual = total_removed/expected_removed
total_regrowth = math.floor(expected_vs_actual*name2regrowth[name]*self.growth_death_ratio)
else:
total_regrowth = math.floor(name2regrowth[name]*self.growth_death_ratio)
# growth
if self.growth_mode == 'random_rnn':
if 'rnn' in name:
new_mask = self.gates_growth(name, new_mask, total_regrowth, weight, epoch)
else:
new_mask = self.random_growth(name, new_mask, total_regrowth, weight)
if self.growth_mode == 'random':
new_mask = self.random_growth(name, new_mask, total_regrowth, weight)
elif self.growth_mode == 'momentum':
new_mask = self.momentum_growth(name, new_mask, total_regrowth, weight)
elif self.growth_mode == 'gradient':
# implementation for Rigging Ticket
new_mask = self.gradient_growth(name, new_mask, total_regrowth, weight)
elif self.growth_mode == 'momentum_neuron':
new_mask = self.momentum_neuron_growth(name, new_mask, total_regrowth, weight)
new_nonzero = new_mask.sum().item()
# exchanging masks
self.masks.pop(name)
self.masks[name] = new_mask.float()
total_nonzero_new += new_nonzero
self.apply_mask()
# Some growth techniques and redistribution are probablistic and we might not grow enough weights or too much weights
# Here we run an exponential smoothing over (death-growth) residuals to adjust future growth
self.adjustments.append(self.baseline_nonzero - total_nonzero_new)
self.adjusted_growth = 0.25*self.adjusted_growth + (0.75*(self.baseline_nonzero - total_nonzero_new)) + np.mean(self.adjustments)
print(self.total_nonzero, self.baseline_nonzero, self.adjusted_growth)
if self.total_nonzero > 0:
print('old, new nonzero count:', self.total_nonzero, total_nonzero_new, self.adjusted_growth)
'''
REDISTRIBUTION
'''
def gather_statistics(self):
self.name2nonzeros = {}
self.name2zeros = {}
self.name2variance = {}
self.gates_mask = {}
self.gates_nonzeros = {}
self.gates_zeros = {}
self.gates_weight = {}
self.gate2variance = {}
self.total_variance = 0.0
self.total_removed = 0
self.total_nonzero = 0
self.total_zero = 0.0
for module in self.modules:
for name, tensor in module.named_parameters():
if name not in self.masks: continue
mask = self.masks[name]
if 'rnn' in name:
self.redistribution_rnn(name, mask, tensor)
if self.redistribution_mode == 'momentum':
grad = self.get_momentum_for_weight(tensor)
self.name2variance[name] = torch.abs(grad[mask.byte()]).mean().item()#/(V1val*V2val)
elif self.redistribution_mode == 'magnitude':
self.name2variance[name] = torch.abs(tensor)[mask.byte()].mean().item()
elif self.redistribution_mode == 'nonzeros':
self.name2variance[name] = float((torch.abs(tensor) > self.threshold).sum().item())
elif self.redistribution_mode == 'none':
self.name2variance[name] = 1.0
elif self.redistribution_mode == 'uniform_distribution':
self.name2variance[name] = 1
else:
print('Unknown redistribution mode:{0}'.format(self.redistribution_mode))
raise Exception('Unknown redistribution mode!')
if not np.isnan(self.name2variance[name]):
self.total_variance += self.name2variance[name]
self.name2nonzeros[name] = mask.sum().item()
self.name2zeros[name] = mask.numel() - self.name2nonzeros[name]
sparsity = self.name2zeros[name]/float(self.masks[name].numel())
death_rate = self.name2death_rate[name]
if sparsity < 0.2:
expected_variance = 1.0/len(list(self.name2variance.keys()))
actual_variance = self.name2variance[name]
expected_vs_actual = expected_variance/actual_variance
if expected_vs_actual < 1.0:
death_rate = min(sparsity, death_rate)
num_remove = math.ceil(death_rate*self.name2nonzeros[name])
self.total_removed += num_remove
self.total_nonzero += self.name2nonzeros[name]
self.total_zero += self.name2zeros[name]
def calc_growth_redistribution(self):
num_overgrowth = 0
total_overgrowth = 0
residual = 0
for name in self.name2variance:
self.name2variance[name] /= self.total_variance
for name in self.gate2variance:
self.gate2variance[name] = [(float(i)/sum(self.gate2variance[name])) for i in self.gate2variance[name]]
residual = 9999
mean_residual = 0
name2regrowth = {}
i = 0
expected_var = 1.0/len(self.name2variance)
while residual > 0 and i < 1000:
residual = 0
for name in self.name2variance:
sparsity = self.name2zeros[name]/float(self.masks[name].numel())
death_rate = self.name2death_rate[name]
if sparsity < 0.2:
expected_variance = 1.0/len(list(self.name2variance.keys()))
actual_variance = self.name2variance[name]
expected_vs_actual = expected_variance/actual_variance
if expected_vs_actual < 1.0:
death_rate = min(sparsity, death_rate)
num_remove = math.ceil(death_rate*self.name2nonzeros[name])
num_nonzero = self.name2nonzeros[name]
num_zero = self.name2zeros[name]
max_regrowth = num_zero + num_remove
if name in name2regrowth:
regrowth = name2regrowth[name]
else:
regrowth = math.ceil(self.name2variance[name]*(self.total_removed+self.adjusted_growth))
regrowth += mean_residual
if regrowth > 0.99*max_regrowth:
name2regrowth[name] = 0.99*max_regrowth
residual += regrowth - name2regrowth[name]
else:
name2regrowth[name] = regrowth
if len(name2regrowth) == 0: mean_residual = 0
else:
mean_residual = residual / len(name2regrowth)
i += 1
if i == 1000:
print('Error resolving the residual! Layers are too full! Residual left over: {0}'.format(residual))
return name2regrowth
'''
DEATH
'''
def Max_MI(self, weight, mask, name):
new_mask = mask.clone()
print((new_mask==0).sum())
pruning_number = self.name2nonzeros[name] * self.name2death_rate[name]
weights_change = torch.abs(weight.data.view(-1)) - torch.abs(self.pre_tensor[name].data.view(-1))
num_MD = (weights_change < 0).sum()
if num_MD < pruning_number:
pruning_number = num_MD
pruning_number = int(pruning_number)
x, idx = torch.sort(weights_change)
new_mask.data.view(-1)[idx[:pruning_number]] = 0
print((new_mask == 0).sum())
return new_mask
def threshold_death(self, mask, weight, name):
return (torch.abs(weight.data) > self.threshold)
def magnitude_death(self, mask, weight, name):
sparsity = self.name2zeros[name]/float(self.masks[name].numel())
death_rate = self.name2death_rate[name]
if sparsity < 0.2:
expected_variance = 1.0/len(list(self.name2variance.keys()))
actual_variance = self.name2variance[name]
expected_vs_actual = expected_variance/actual_variance
if expected_vs_actual < 1.0:
death_rate = min(sparsity, death_rate)
print(name, expected_variance, actual_variance, expected_vs_actual, death_rate)
num_remove = math.ceil(death_rate*self.name2nonzeros[name])
if num_remove == 0.0: return weight.data != 0.0
num_zeros = self.name2zeros[name]
x, idx = torch.sort(torch.abs(weight.data.view(-1)))
n = idx.shape[0]
num_nonzero = n-num_zeros
k = math.ceil(num_zeros + num_remove)
threshold = x[k-1].item()
return (torch.abs(weight.data) > threshold)
def global_magnitude_death(self):
death_rate = 0.0
for name in self.name2death_rate:
if name in self.masks:
death_rate = self.name2death_rate[name]
tokill = math.ceil(death_rate*self.baseline_nonzero)
total_removed = 0
prev_removed = 0
while total_removed < tokill*(1.0-self.tolerance) or (total_removed > tokill*(1.0+self.tolerance)):
total_removed = 0
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
remain = (torch.abs(weight.data) > self.threshold).sum().item()
total_removed += self.name2nonzeros[name] - remain
if prev_removed == total_removed: break
prev_removed = total_removed
if total_removed > tokill*(1.0+self.tolerance):
self.threshold *= 1.0-self.increment
self.increment *= 0.99
elif total_removed < tokill*(1.0-self.tolerance):
self.threshold *= 1.0+self.increment
self.increment *= 0.99
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
self.masks[name][:] = torch.abs(weight.data) > self.threshold
return int(total_removed)
def global_momentum_growth(self, total_regrowth):
togrow = total_regrowth
total_grown = 0
last_grown = 0
while total_grown < togrow*(1.0-self.tolerance) or (total_grown > togrow*(1.0+self.tolerance)):
total_grown = 0
total_possible = 0
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
new_mask = self.masks[name]
grad = self.get_momentum_for_weight(weight)
grad = grad*(new_mask==0).float()
possible = (grad !=0.0).sum().item()
total_possible += possible
grown = (torch.abs(grad.data) > self.growth_threshold).sum().item()
total_grown += grown
print(total_grown, self.growth_threshold, togrow, self.growth_increment, total_possible)
if total_grown == last_grown: break
last_grown = total_grown
if total_grown > togrow*(1.0+self.tolerance):
self.growth_threshold *= 1.02
elif total_grown < togrow*(1.0-self.tolerance):
self.growth_threshold *= 0.98
total_new_nonzeros = 0
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
new_mask = self.masks[name]
grad = self.get_momentum_for_weight(weight)
grad = grad*(new_mask==0).float()
self.masks[name][:] = (new_mask.byte() | (torch.abs(grad.data) > self.growth_threshold)).float()
total_new_nonzeros += new_mask.sum().item()
return total_new_nonzeros
def magnitude_and_negativity_death(self, mask, weight, name):
num_remove = math.ceil(self.name2death_rate[name]*self.name2nonzeros[name])
num_zeros = self.name2zeros[name]
# find magnitude threshold
# remove all weights which absolute value is smaller than threshold
x, idx = torch.sort(weight[weight > 0.0].data.view(-1))
k = math.ceil(num_remove/2.0)
if k >= x.shape[0]:
k = x.shape[0]
threshold_magnitude = x[k-1].item()
# find negativity threshold
# remove all weights which are smaller than threshold
x, idx = torch.sort(weight[weight < 0.0].view(-1))
k = math.ceil(num_remove/2.0)
if k >= x.shape[0]:
k = x.shape[0]
threshold_negativity = x[k-1].item()
pos_mask = (weight.data > threshold_magnitude) & (weight.data > 0.0)
neg_mask = (weight.data > threshold_negativity) & (weight.data < 0.0)
new_mask = pos_mask | neg_mask
return new_mask
'''
GROWTH
'''
def random_growth(self, name, new_mask, total_regrowth, weight):
n = (new_mask==0).sum().item()
if n == 0: return new_mask
expeced_growth_probability = (total_regrowth/n)
new_weights = torch.rand(new_mask.shape).cuda() < expeced_growth_probability
new_mask_final = new_mask.byte() | new_weights
return new_mask_final
def momentum_growth(self, name, new_mask, total_regrowth, weight):
grad = self.get_momentum_for_weight(weight)
grad = grad*(new_mask==0).float()
y, idx = torch.sort(torch.abs(grad).flatten(), descending=True)
new_mask.data.view(-1)[idx[:total_regrowth]] = 1.0
return new_mask
def gradient_growth(self, name, new_mask, total_regrowth, weight):
print('implement gradient regrow:')
grad = self.get_gradient_for_weights(weight)
grad = grad*(new_mask==0).float()
y, idx = torch.sort(torch.abs(grad).flatten(), descending=True)
new_mask.data.view(-1)[idx[:total_regrowth]] = 1.0
return new_mask
def momentum_neuron_growth(self, name, new_mask, total_regrowth, weight):
grad = self.get_momentum_for_weight(weight)
M = torch.abs(grad)
if len(M.shape) == 2: sum_dim = [1]
elif len(M.shape) == 4: sum_dim = [1, 2, 3]
v = M.mean(sum_dim).data
v /= v.sum()
slots_per_neuron = (new_mask==0).sum(sum_dim)
M = M*(new_mask==0).float()
for i, fraction in enumerate(v):
neuron_regrowth = math.floor(fraction.item()*total_regrowth)
available = slots_per_neuron[i].item()
y, idx = torch.sort(M[i].flatten())
if neuron_regrowth > available:
neuron_regrowth = available
threshold = y[-(neuron_regrowth)].item()
if threshold == 0.0: continue
if neuron_regrowth < 10: continue
new_mask[i] = new_mask[i] | (M[i] > threshold)
return new_mask
'''
UTILITY
'''
def redistribution_rnn(self, name, mask, weight):
self.gates_mask[name] = torch.chunk(mask, self.gate_num, 0)
self.gates_weight[name] = torch.chunk(weight, self.gate_num, 0)
self.gates_weight_grad[name] = torch.chunk(weight.grad, self.gate_num, 0)
self.gates_nonzeros[name] = [self.gates_mask[name][i].sum().item() for i in range(self.gate_num)]
self.gates_zeros[name] = [self.gates_mask[name][i].numel() - self.gates_nonzeros[name][i] for i in
range(self.gate_num)]
self.gate2variance[name] = [1/self.gate_num for i in range(self.gate_num)]
def get_momentum_for_weight(self, weight):
if 'exp_avg' in self.optimizer.state[weight]:
adam_m1 = self.optimizer.state[weight]['exp_avg']
adam_m2 = self.optimizer.state[weight]['exp_avg_sq']
grad = adam_m1/(torch.sqrt(adam_m2) + 1e-08)
elif 'momentum_buffer' in self.optimizer.state[weight]:
grad = self.optimizer.state[weight]['momentum_buffer']
return grad
def get_gradient_for_weights(self, weight):
grad = weight.grad.clone()
return grad
def print_nonzero_counts(self):
gate_name = ['i', 'f', 'c', 'o']
for module in self.modules:
for name, tensor in module.named_parameters():
if name not in self.masks: continue
mask = self.masks[name]
num_nonzeros = (mask != 0).sum().item()
if name in self.name2variance:
val = '{0}: {1}->{2}, density: {3:.3f}, proportion: {4:.4f}'.format(name, self.name2nonzeros[name], num_nonzeros, num_nonzeros/float(mask.numel()), self.name2variance[name])
print(val)
if 'rnn' in name:
newmasks_print = torch.chunk(mask, self.gate_num, 0)
num_newmasks_print = [(newmasks_print[i] != 0).sum().item() for i in range(self.gate_num)]
for i in range(len(num_newmasks_print)):
val_gate = '{0}: {1}->{2}, density: {3:.3f}, proportion: {4:.4f}'.format(gate_name[i], self.gates_nonzeros[name][i], num_newmasks_print[i],num_newmasks_print[i] / float(newmasks_print[i].numel()), self.gate2variance[name][i])
print(val_gate)
else:
print(name, num_nonzeros)
for module in self.modules:
for name, tensor in module.named_parameters():
if name not in self.masks: continue
print('Death rate: {0}\n'.format(self.name2death_rate[name]))
break