-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrunner.py
324 lines (270 loc) · 13.9 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import os
import time
import datetime
import yaml
import git
import torch
import torch.backends.cudnn as cudnn
from timm.utils import AverageMeter
from utils import load_checkpoint, load_pretrained, save_checkpoint, save_image_torch, get_grad_norm
from utils.config import parse_options, copy_cfg, ordered_dict_to_dict
from utils.scheduler import build_scheduler
from utils.optimizer import build_optimizer
from utils.metrics import get_psnr_torch, get_ssim_torch
from utils.loss import build_loss
from utils.logger import create_logger
from models import build_model
from datasets import build_train_loader, build_valid_loader, build_test_loader
from forwards import build_forwards, build_profile
from torch.utils.tensorboard import SummaryWriter
def main(config):
writer = SummaryWriter(os.path.join(config['output'], 'tensorboard'))
train_dataloader = build_train_loader(config['data'])
if not config['testset_as_validset']:
valid_dataloader = build_valid_loader(config['data'], 1)
else:
valid_dataloader = build_test_loader(config['data'], 2)
logger.info(f"Creating model:{config['name']}/{config['model']['type']}")
model = build_model(config['model'])
model.cuda()
logger.info(str(model))
profile_forward = build_profile(config)
profile_model(config, profile_forward, model, train_dataloader, logger)
optimizer = build_optimizer(config['train'], model)
lr_scheduler = build_scheduler(config['train'], optimizer, len(train_dataloader))
loss_list = build_loss(config['loss'])
logger.info(str(loss_list))
logger.info('Building forwards:')
logger.info(f'Train forward: {config["train"]["forward_type"]}')
logger.info(f'Test forward: {config["test"]["forward_type"]}')
train_forward, test_forward = build_forwards(config)
max_psnr = 0.0
max_ssim = 0.0
total_epochs = config['train']['early_stop'] if config['train']['early_stop'] is not None else config['train']['epochs']
if config.get('throughput_mode', False):
throughput(config, train_forward, model, valid_dataloader, logger)
return
# set auto resume
if config['train']['auto_resume']:
auto_resume_path = os.path.join(config['output'], 'checkpoints', 'checkpoint.pth')
if os.path.exists(auto_resume_path):
config['train']['resume'] = auto_resume_path
logger.info(f'Auto resume: setting resume path to {auto_resume_path}')
if config['train'].get('resume'):
max_psnr = load_checkpoint(config, model, optimizer, lr_scheduler, logger)
validate(config, test_forward, model, loss_list, valid_dataloader, config['train'].get('start_epoch', 0), writer)
if config.get('eval_mode', False):
return
if config['train'].get('pretrained') and (not config['train'].get('resume')):
load_pretrained(config, model, logger)
validate(config, test_forward, model, loss_list, valid_dataloader, config['train'].get('start_epoch', 0), writer)
if config.get('eval_mode', False):
return
logger.info("Start training")
start_time = time.time()
start = time.time()
lr_scheduler.step(config['train'].get('start_epoch', 0))
for epoch in range(config['train'].get('start_epoch', 0)+1, total_epochs+1):
train_one_epoch(config, train_forward, model, loss_list, train_dataloader, optimizer, None, epoch, lr_scheduler, writer)
if epoch % config['valid_per_epoch'] == 0 or (total_epochs - epoch) < 50:
psnr, ssim, loss = validate(config, test_forward, model, loss_list, valid_dataloader, epoch, writer)
max_psnr = max(max_psnr, psnr)
max_ssim = max(max_ssim, ssim)
writer.add_scalar('eval/max_psnr', max_psnr, epoch)
writer.add_scalar('eval/max_ssim', max_ssim, epoch)
else:
psnr = 0
save_checkpoint(config, epoch, model, max_psnr, optimizer, lr_scheduler, logger, is_best=(max_psnr==psnr))
logger.info(f'Train: [{epoch}/{config["train"]["epochs"]}] Max Valid PSNR: {max_psnr:.4f}, Max Valid SSIM: {max_ssim:.4f}')
logger.info(f"Train: [{epoch}/{config['train']['epochs']}] Total Time {datetime.timedelta(seconds=int(time.time()-start))}")
start = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
@torch.no_grad()
def profile_model(config, profile_forward, model, data_loader, logger):
if profile_forward is not None:
data_iter = iter(data_loader)
data = next(data_iter)
del data_iter
profile_forward(config, model, data, logger)
n_parameters = sum(p.numel() for p in model.parameters())
logger.info(f"Total Params: {n_parameters:,}")
def train_one_epoch(config, train_forward, model, loss_list, data_loader, optimizer, scaler, epoch, lr_scheduler, writer):
torch.cuda.reset_peak_memory_stats()
model.train()
optimizer.zero_grad()
num_steps = len(data_loader)
batch_time = AverageMeter()
data_time = AverageMeter()
loss_meter = AverageMeter()
norm_meter = AverageMeter()
losses_count = len(loss_list)
losses_meter = [AverageMeter() for _ in range(losses_count)]
start = time.time()
end = time.time()
for idx, data in enumerate(data_loader):
data_time.update(time.time() - end)
outputs, targets = train_forward(config, model, data)
losses = loss_list(outputs, targets)
loss = sum(losses)
optimizer.zero_grad()
loss.backward()
if config['train'].get('clip_grad'):
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config['train']['clip_grad'])
else:
grad_norm = get_grad_norm(model.parameters())
optimizer.step()
if not config['train']['lr_scheduler']['t_in_epochs']:
lr_scheduler.step_update((epoch-1)*num_steps+idx)
batch_size = list(targets.values())[0].size(0)
for _loss_meter, _loss in zip(losses_meter, losses):
_loss_meter.update(_loss.item(), batch_size)
loss_meter.update(loss.item(), batch_size)
norm_meter.update(grad_norm)
batch_time.update(time.time() - end)
end = time.time()
if idx % config['print_per_iter'] == 0 or idx == num_steps:
lr = optimizer.param_groups[0]['lr']
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - idx)
logger.info(
f'Train: [{epoch}/{config["train"]["epochs"]}][{idx}/{num_steps}]\t'
f'ETA {datetime.timedelta(seconds=int(etas))} LR {lr:.6f}\t'
f'Time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'Data {data_time.val:.4f} ({data_time.avg:.4f})\t'
f'Loss {loss_meter.val:.8f} ({loss_meter.avg:.8f})\t'
f'GradNorm {norm_meter.val:.4f} ({norm_meter.avg:.4f})\t'
f'Mem {memory_used:.0f}MB')
if config['train']['lr_scheduler']['t_in_epochs']:
lr_scheduler.step(epoch)
logger.info(f"Train: [{epoch}/{config['train']['epochs']}] Time {datetime.timedelta(seconds=int(time.time()-start))}")
tensor_board_dict = {'train/loss_total':loss_meter.avg}
for index, (_loss, _loss_meter) in enumerate(zip(losses, losses_meter)):
tensor_board_dict[f'train/loss_{index}'] = _loss_meter.avg
for log_key, log_value in tensor_board_dict.items():
writer.add_scalar(log_key, log_value, epoch)
@torch.no_grad()
def validate(config, test_forward, model, loss_list, data_loader, epoch, writer):
torch.cuda.reset_max_memory_allocated()
model.eval()
logger.info(f"Valid: [{epoch}/{config['train']['epochs']}]\t")
batch_time = AverageMeter()
data_time = AverageMeter()
loss_meter = AverageMeter()
psnr_meter = AverageMeter()
ssim_meter = AverageMeter()
losses_count = len(loss_list)
losses_meter = [AverageMeter() for _ in range(losses_count)]
start = time.time()
end = time.time()
for idx, data in enumerate(data_loader):
data_time.update(time.time() - end)
outputs, targets, img_files, lbl_files = test_forward(config, model, data)
if config['testset_as_validset']:
psnr, ssim = test_metric_cuda(config, epoch, outputs[config['test']['which_stage']], targets[config['test']['which_gt']], img_files, lbl_files)
else:
psnr, ssim = validate_metric(config, epoch, outputs[config['test']['which_stage']], targets[config['test']['which_gt']], img_files, lbl_files)
losses = loss_list(outputs, targets)
loss = sum(losses)
batch_size = targets[config['test']['which_gt']].size(0)
for _loss_meter, _loss in zip(losses_meter, losses):
_loss_meter.update(_loss.item(), batch_size)
loss_meter.update(loss.item(), batch_size)
psnr_meter.update(psnr.item(), batch_size)
ssim_meter.update(ssim.item(), batch_size)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if config['testset_as_validset'] or idx % config['print_per_iter'] == 0 or idx == len(data_loader):
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(
f'Valid: [{epoch}/{config["train"]["epochs"]}][{idx}/{len(data_loader)}]\t'
f'Time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'Data {data_time.val:.4f} ({data_time.avg:.4f})\t'
f'Loss {loss_meter.val:.8f} ({loss_meter.avg:.8f})\t'
f'PSNR {psnr_meter.val:.4f} ({psnr_meter.avg:.4f})\t'
f'SSIM {ssim_meter.val:.4f} ({ssim_meter.avg:.4f})\t'
f'Mem {memory_used:.0f}MB\t{os.path.basename(img_files[0])}')
logger.info(f'Valid: [{epoch}/{config["train"]["epochs"]}] PSNR {psnr_meter.avg:.4f}\tSSIM {ssim_meter.avg:.4f}')
logger.info(f'Valid: [{epoch}/{config["train"]["epochs"]}] Time {datetime.timedelta(seconds=int(time.time()-start))}')
tensor_board_dict = {'eval/loss_total':loss_meter.avg}
for index, (loss, loss_meter) in enumerate(zip(losses, losses_meter)):
tensor_board_dict[f'eval/loss_{index}'] = loss_meter.avg
tensor_board_dict['eval/psnr'] = psnr_meter.avg
tensor_board_dict['eval/ssim'] = ssim_meter.avg
for log_key, log_value in tensor_board_dict.items():
writer.add_scalar(log_key, log_value, epoch)
return psnr_meter.avg, ssim_meter.avg, loss_meter.avg
@torch.no_grad()
def validate_metric(config, epoch, outputs, targets, image_paths, target_params=None):
outputs = torch.clamp(outputs, 0, 1) * 255
targets = targets * 255
if config['test']['round']:
outputs = outputs.round()
targets = targets.round()
psnrs = get_psnr_torch(outputs, targets)
ssims = get_ssim_torch(outputs, targets)
if config['test']['save_image'] and epoch % config['save_per_epoch'] == 0:
images = torch.cat((outputs, targets), dim=3)
result_path = os.path.join(config['output'], 'results', f'valid_{epoch:04d}')
os.makedirs(result_path, exist_ok=True)
for image, image_path, psnr in zip(images, image_paths, psnrs):
save_path = os.path.join(result_path, f'{os.path.basename(image_path)[:-4]}_{psnr:.2f}.jpg')
save_image_torch(image, save_path)
return psnrs.mean(), ssims.mean()
@torch.no_grad()
def test_metric_cuda(config, epoch, outputs, targets, image_paths, target_params=None):
outputs = torch.clamp(outputs, 0, 1) * 255
targets = torch.clamp(targets, 0, 1) * 255
if config['test']['round']:
outputs = outputs.round()
targets = targets.round()
psnr = get_psnr_torch(outputs, targets)
ssim = get_ssim_torch(outputs, targets)
if config['test']['save_image']:
result_path = os.path.join(config['output'], 'results', f'test_{epoch:04d}')
os.makedirs(result_path, exist_ok=True)
save_path = os.path.join(result_path, f'{os.path.basename(image_paths[0])[:-4]}_{psnr.item():.2f}.png')
save_image_torch(outputs[0], save_path)
return psnr, ssim
@torch.no_grad()
def throughput(config, forward, model, data_loader, logger):
model.eval()
for idx, data in enumerate(data_loader):
for i in range(30):
forward(config, model, data)
logger.info(f"throughput averaged with 100 times")
torch.cuda.synchronize()
tic = time.time()
for i in range(100):
pred, label = forward(config, model, data)
batch_size = list(pred.values())[0].size(0)
torch.cuda.synchronize()
toc = time.time()
logger.info(f"batch_size {batch_size} throughput {(toc - tic) * 1000 / (100 * batch_size)}ms")
return
if __name__ == '__main__':
args, config = parse_options()
phase = 'train' if not args.test else 'test'
cudnn.benchmark = True
os.makedirs(config['output'], exist_ok=True)
start_time = time.strftime("%y%m%d-%H%M", time.localtime())
logger = create_logger(output_dir=config['output'], name=f"{config['tag']}", action=f"{phase}-{start_time}")
path = os.path.join(config['output'], f"{phase}-{start_time}.yaml")
try:
repo = git.Repo(search_parent_directories=True)
sha = repo.head.object.hexsha
if repo.is_dirty():
logger.warning(f'Current work on commit: {sha}, however the repo is dirty (not committed)!')
else:
logger.info(f'Current work on commit: {sha}.')
except git.exc.InvalidGitRepositoryError as e:
logger.warn(f'No git repo base.')
copy_cfg(config, path)
logger.info(f"Full config saved to {path}")
# print config
logger.info("Config:\n" + yaml.dump(ordered_dict_to_dict(config), default_flow_style=False, sort_keys=False))
current_cuda_device = torch.cuda.get_device_properties(torch.cuda.current_device())
logger.info(f"Current CUDA Device: {current_cuda_device.name}, Total Mem: {int(current_cuda_device.total_memory / 1024 / 1024)}MB")
main(config)