This directory contains example outputs generated using the TRACES analytical framework. All examples are generated using the primary sample dataset TRACES_sample_52x10_dataset_A1.xlsx
.
TRACES/ ├── data │ └── examples │ ├── TRACES_sample_52x10_dataset_A1.xlsx # Link to reference source data in /data/examples/ │ └── TRACES_sample_52x10_dataset_B1.xlsx # bonus time-series dataset to try, example outputs not provided ├── docs │ ├── ComponentFlexGuide.md │ ├── Formulae.md │ ├── OperationalGuide.md │ └── examples │ ├── README.md # THIS FILE │ ├── outputs │ │ ├── step1_setup.txt # Initial data loading results │ │ ├── step2_correlations.txt # Core correlation analysis │ │ ├── step3_advanced.txt # Advanced correlation methods │ │ ├── step4_framework.txt # Analysis framework results │ │ └── step6_full_analysis.txt # Complete dataset analysis │ └── visualizations │ ├── ccf_analysis.png # CCF Analysis scatter plot │ ├── correlation_comparison.png # Method comparison bar plot │ ├── method_performance.png # Performance by relationship type │ └── relationship_matrix.png # Confidence score matrix
This directory contains example outputs generated using the TRACES analytical framework. All examples are generated using the primary sample dataset TRACES_sample_52x10_dataset_A1.xlsx
.
Primary dataset: /data/examples/TRACES_sample_52x10_dataset_A1.xlsx
- 52 time points (weekly intervals)
- 11 columns total:
- Time column
- 10 time series (Label_1 through Label_10)
- Used to generate all example outputs shown here
Note: An additional sample dataset (TRACES_sample_52x10_dataset_B1.xlsx
) is provided in the same directory for users to practice with different time series data.
Step-by-step analysis results from the TRACES notebook:
step1_setup.txt
- Initial data loading and validationstep2_correlations.txt
- Basic correlation analysisstep3_advanced.txt
- Advanced correlation methodsstep4_framework.txt
- Analysis framework resultsstep6_full_analysis.txt
- Complete dataset analysis
Four key visualization outputs:
-
ccf_analysis.png
- Cross-correlation function analysis scatter plot- Shows relationship between maximum correlation and optimal lag
- Color indicates confidence score
-
correlation_comparison.png
- Method comparison bar plot- Compares Pearson, Spearman, and Kendall methods
- Shows relative performance across pairs
-
method_performance.png
- Performance by relationship type- Distribution of best methods
- Breakdown by relationship classification
-
relationship_matrix.png
- Confidence score matrix- Heatmap of relationship types
- Color intensity shows confidence level
-
Relationship Types Found
- Complex: 33 pairs
- Lagged: 7 pairs
- Linear: 4 pairs
- Non-linear: 1 pair
-
Correlation Strength Distribution
- Strong correlations (>0.7): 15 pairs
- Moderate correlations (0.3-0.7): 26 pairs
- Weak correlations (<0.3): 4 pairs
-
Method Performance
- Primary methods: CCF+Spearman (complex relationships), Pearson (linear)
- Overall mean confidence score: 0.582
- Highest confidence: 0.999 (Label_3 vs Label_10)
- All outputs are reproducible using the primary sample dataset
- Examples exhibit the dynamic range of TRACES capabilities
- Text outputs provide detailed analysis at each step
- Visualizations show key relationships and patterns
- Reference the
OperationalGuide.md
for execution details