-
-
Notifications
You must be signed in to change notification settings - Fork 231
/
Copy pathClosest2D.cs
1304 lines (1194 loc) · 52.6 KB
/
Closest2D.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
using UnityEngine;
namespace ProceduralToolkit
{
/// <summary>
/// Collection of closest point(s) algorithms
/// </summary>
public static partial class Closest
{
#region Point-Line
/// <summary>
/// Projects the point onto the line
/// </summary>
public static Vector2 PointLine(Vector2 point, Line2 line)
{
return PointLine(point, line.origin, line.direction, out float projectedX);
}
/// <summary>
/// Projects the point onto the line
/// </summary>
/// <param name="projectedX">Position of the projected point on the line relative to the origin</param>
public static Vector2 PointLine(Vector2 point, Line2 line, out float projectedX)
{
return PointLine(point, line.origin, line.direction, out projectedX);
}
/// <summary>
/// Projects the point onto the line
/// </summary>
/// <param name="lineDirection">Normalized direction of the line</param>
public static Vector2 PointLine(Vector2 point, Vector2 lineOrigin, Vector2 lineDirection)
{
return PointLine(point, lineOrigin, lineDirection, out float projectedX);
}
/// <summary>
/// Projects the point onto the line
/// </summary>
/// <param name="lineDirection">Normalized direction of the line</param>
/// <param name="projectedX">Position of the projected point on the line relative to the origin</param>
public static Vector2 PointLine(Vector2 point, Vector2 lineOrigin, Vector2 lineDirection, out float projectedX)
{
// In theory, sqrMagnitude should be 1, but in practice this division helps with numerical stability
projectedX = Vector2.Dot(lineDirection, point - lineOrigin)/lineDirection.sqrMagnitude;
return lineOrigin + lineDirection*projectedX;
}
#endregion Point-Line
#region Point-Ray
/// <summary>
/// Projects the point onto the ray
/// </summary>
public static Vector2 PointRay(Vector2 point, Ray2D ray)
{
return PointRay(point, ray.origin, ray.direction, out float projectedX);
}
/// <summary>
/// Projects the point onto the ray
/// </summary>
/// <param name="projectedX">Position of the projected point on the ray relative to the origin</param>
public static Vector2 PointRay(Vector2 point, Ray2D ray, out float projectedX)
{
return PointRay(point, ray.origin, ray.direction, out projectedX);
}
/// <summary>
/// Projects the point onto the ray
/// </summary>
/// <param name="rayDirection">Normalized direction of the ray</param>
public static Vector2 PointRay(Vector2 point, Vector2 rayOrigin, Vector2 rayDirection)
{
return PointRay(point, rayOrigin, rayDirection, out float projectedX);
}
/// <summary>
/// Projects the point onto the ray
/// </summary>
/// <param name="rayDirection">Normalized direction of the ray</param>
/// <param name="projectedX">Position of the projected point on the ray relative to the origin</param>
public static Vector2 PointRay(Vector2 point, Vector2 rayOrigin, Vector2 rayDirection, out float projectedX)
{
float pointProjection = Vector2.Dot(rayDirection, point - rayOrigin);
if (pointProjection <= 0)
{
projectedX = 0;
return rayOrigin;
}
// In theory, sqrMagnitude should be 1, but in practice this division helps with numerical stability
projectedX = pointProjection/rayDirection.sqrMagnitude;
return rayOrigin + rayDirection*projectedX;
}
#endregion Point-Ray
#region Point-Segment
/// <summary>
/// Projects the point onto the segment
/// </summary>
public static Vector2 PointSegment(Vector2 point, Segment2 segment)
{
return PointSegment(point, segment.a, segment.b, out float projectedX);
}
/// <summary>
/// Projects the point onto the segment
/// </summary>
/// <param name="projectedX">Normalized position of the projected point on the segment.
/// Value of zero means that the projected point coincides with segment.a.
/// Value of one means that the projected point coincides with segment.b.</param>
public static Vector2 PointSegment(Vector2 point, Segment2 segment, out float projectedX)
{
return PointSegment(point, segment.a, segment.b, out projectedX);
}
/// <summary>
/// Projects the point onto the segment
/// </summary>
public static Vector2 PointSegment(Vector2 point, Vector2 segmentA, Vector2 segmentB)
{
return PointSegment(point, segmentA, segmentB, out float projectedX);
}
/// <summary>
/// Projects the point onto the segment
/// </summary>
/// <param name="projectedX">Normalized position of the projected point on the segment.
/// Value of zero means that the projected point coincides with <paramref name="segmentA"/>.
/// Value of one means that the projected point coincides with <paramref name="segmentB"/>.</param>
public static Vector2 PointSegment(Vector2 point, Vector2 segmentA, Vector2 segmentB, out float projectedX)
{
Vector2 segmentDirection = segmentB - segmentA;
float sqrSegmentLength = segmentDirection.sqrMagnitude;
if (sqrSegmentLength < Geometry.Epsilon)
{
// The segment is a point
projectedX = 0;
return segmentA;
}
float pointProjection = Vector2.Dot(segmentDirection, point - segmentA);
if (pointProjection <= 0)
{
projectedX = 0;
return segmentA;
}
if (pointProjection >= sqrSegmentLength)
{
projectedX = 1;
return segmentB;
}
projectedX = pointProjection/sqrSegmentLength;
return segmentA + segmentDirection*projectedX;
}
private static Vector2 PointSegment(Vector2 point, Vector2 segmentA, Vector2 segmentB, Vector2 segmentDirection, float segmentLength)
{
float pointProjection = Vector2.Dot(segmentDirection, point - segmentA);
if (pointProjection <= 0)
{
return segmentA;
}
if (pointProjection >= segmentLength)
{
return segmentB;
}
return segmentA + segmentDirection*pointProjection;
}
#endregion Point-Segment
#region Point-Circle
/// <summary>
/// Projects the point onto the circle
/// </summary>
public static Vector2 PointCircle(Vector2 point, Circle2 circle)
{
return PointCircle(point, circle.center, circle.radius);
}
/// <summary>
/// Projects the point onto the circle
/// </summary>
public static Vector2 PointCircle(Vector2 point, Vector2 circleCenter, float circleRadius)
{
return circleCenter + (point - circleCenter).normalized*circleRadius;
}
#endregion Point-Circle
#region Line-Line
/// <summary>
/// Finds closest points on the lines
/// </summary>
public static void LineLine(Line2 lineA, Line2 lineB, out Vector2 pointA, out Vector2 pointB)
{
LineLine(lineA.origin, lineA.direction, lineB.origin, lineB.direction, out pointA, out pointB);
}
/// <summary>
/// Finds closest points on the lines
/// </summary>
public static void LineLine(Vector2 originA, Vector2 directionA, Vector2 originB, Vector2 directionB,
out Vector2 pointA, out Vector2 pointB)
{
Vector2 originBToA = originA - originB;
float denominator = VectorE.PerpDot(directionA, directionB);
float perpDotB = VectorE.PerpDot(directionB, originBToA);
if (Mathf.Abs(denominator) < Geometry.Epsilon)
{
// Parallel
if (Mathf.Abs(perpDotB) > Geometry.Epsilon ||
Mathf.Abs(VectorE.PerpDot(directionA, originBToA)) > Geometry.Epsilon)
{
// Not collinear
pointA = originA;
pointB = originB + directionB*Vector2.Dot(directionB, originBToA);
return;
}
// Collinear
pointA = pointB = originA;
return;
}
// Not parallel
pointA = pointB = originA + directionA*(perpDotB/denominator);
}
#endregion Line-Line
#region Line-Ray
/// <summary>
/// Finds closest points on the line and the ray
/// </summary>
public static void LineRay(Line2 line, Ray2D ray, out Vector2 linePoint, out Vector2 rayPoint)
{
LineRay(line.origin, line.direction, ray.origin, ray.direction, out linePoint, out rayPoint);
}
/// <summary>
/// Finds closest points on the line and the ray
/// </summary>
public static void LineRay(Vector2 lineOrigin, Vector2 lineDirection, Vector2 rayOrigin, Vector2 rayDirection,
out Vector2 linePoint, out Vector2 rayPoint)
{
Vector2 rayOriginToLineOrigin = lineOrigin - rayOrigin;
float denominator = VectorE.PerpDot(lineDirection, rayDirection);
float perpDotA = VectorE.PerpDot(lineDirection, rayOriginToLineOrigin);
if (Mathf.Abs(denominator) < Geometry.Epsilon)
{
// Parallel
float perpDotB = VectorE.PerpDot(rayDirection, rayOriginToLineOrigin);
if (Mathf.Abs(perpDotA) > Geometry.Epsilon || Mathf.Abs(perpDotB) > Geometry.Epsilon)
{
// Not collinear
float rayOriginProjection = Vector2.Dot(lineDirection, rayOriginToLineOrigin);
linePoint = lineOrigin - lineDirection*rayOriginProjection;
rayPoint = rayOrigin;
return;
}
// Collinear
linePoint = rayPoint = rayOrigin;
return;
}
// Not parallel
float rayDistance = perpDotA/denominator;
if (rayDistance < -Geometry.Epsilon)
{
// No intersection
float rayOriginProjection = Vector2.Dot(lineDirection, rayOriginToLineOrigin);
linePoint = lineOrigin - lineDirection*rayOriginProjection;
rayPoint = rayOrigin;
return;
}
// Point intersection
linePoint = rayPoint = rayOrigin + rayDirection*rayDistance;
}
#endregion Line-Ray
#region Line-Segment
/// <summary>
/// Finds closest points on the line and the segment
/// </summary>
public static void LineSegment(Line2 line, Segment2 segment, out Vector2 linePoint, out Vector2 segmentPoint)
{
LineSegment(line.origin, line.direction, segment.a, segment.b, out linePoint, out segmentPoint);
}
/// <summary>
/// Finds closest points on the line and the segment
/// </summary>
public static void LineSegment(Vector2 lineOrigin, Vector2 lineDirection, Vector2 segmentA, Vector2 segmentB,
out Vector2 linePoint, out Vector2 segmentPoint)
{
Vector2 segmentDirection = segmentB - segmentA;
Vector2 segmentAToOrigin = lineOrigin - segmentA;
float denominator = VectorE.PerpDot(lineDirection, segmentDirection);
float perpDotA = VectorE.PerpDot(lineDirection, segmentAToOrigin);
if (Mathf.Abs(denominator) < Geometry.Epsilon)
{
// Parallel
bool codirected = Vector2.Dot(lineDirection, segmentDirection) > 0;
// Normalized direction gives more stable results
float perpDotB = VectorE.PerpDot(segmentDirection.normalized, segmentAToOrigin);
if (Mathf.Abs(perpDotA) > Geometry.Epsilon || Mathf.Abs(perpDotB) > Geometry.Epsilon)
{
// Not collinear
if (codirected)
{
float segmentAProjection = Vector2.Dot(lineDirection, segmentAToOrigin);
linePoint = lineOrigin - lineDirection*segmentAProjection;
segmentPoint = segmentA;
}
else
{
float segmentBProjection = Vector2.Dot(lineDirection, lineOrigin - segmentB);
linePoint = lineOrigin - lineDirection*segmentBProjection;
segmentPoint = segmentB;
}
return;
}
// Collinear
if (codirected)
{
linePoint = segmentPoint = segmentA;
}
else
{
linePoint = segmentPoint = segmentB;
}
return;
}
// Not parallel
float segmentDistance = perpDotA/denominator;
if (segmentDistance < -Geometry.Epsilon || segmentDistance > 1 + Geometry.Epsilon)
{
// No intersection
segmentPoint = segmentA + segmentDirection*Mathf.Clamp01(segmentDistance);
float segmentPointProjection = Vector2.Dot(lineDirection, segmentPoint - lineOrigin);
linePoint = lineOrigin + lineDirection*segmentPointProjection;
return;
}
// Point intersection
linePoint = segmentPoint = segmentA + segmentDirection*segmentDistance;
}
#endregion Line-Segment
#region Line-Circle
/// <summary>
/// Finds closest points on the line and the circle
/// </summary>
public static void LineCircle(Line2 line, Circle2 circle, out Vector2 linePoint, out Vector2 circlePoint)
{
LineCircle(line.origin, line.direction, circle.center, circle.radius, out linePoint, out circlePoint);
}
/// <summary>
/// Finds closest points on the line and the circle
/// </summary>
public static void LineCircle(Vector2 lineOrigin, Vector2 lineDirection, Vector2 circleCenter, float circleRadius,
out Vector2 linePoint, out Vector2 circlePoint)
{
Vector2 originToCenter = circleCenter - lineOrigin;
float centerProjection = Vector2.Dot(lineDirection, originToCenter);
float sqrDistanceToLine = originToCenter.sqrMagnitude - centerProjection*centerProjection;
float sqrDistanceToIntersection = circleRadius*circleRadius - sqrDistanceToLine;
if (sqrDistanceToIntersection < -Geometry.Epsilon)
{
// No intersection
linePoint = lineOrigin + lineDirection*centerProjection;
circlePoint = circleCenter + (linePoint - circleCenter).normalized*circleRadius;
return;
}
if (sqrDistanceToIntersection < Geometry.Epsilon)
{
// Point intersection
linePoint = circlePoint = lineOrigin + lineDirection*centerProjection;
return;
}
// Two points intersection
float distanceToIntersection = Mathf.Sqrt(sqrDistanceToIntersection);
float distanceA = centerProjection - distanceToIntersection;
linePoint = circlePoint = lineOrigin + lineDirection*distanceA;
}
#endregion Line-Circle
#region Ray-Ray
/// <summary>
/// Finds closest points on the rays
/// </summary>
public static void RayRay(Ray2D rayA, Ray2D rayB, out Vector2 pointA, out Vector2 pointB)
{
RayRay(rayA.origin, rayA.direction, rayB.origin, rayB.direction, out pointA, out pointB);
}
/// <summary>
/// Finds closest points on the rays
/// </summary>
public static void RayRay(Vector2 originA, Vector2 directionA, Vector2 originB, Vector2 directionB,
out Vector2 pointA, out Vector2 pointB)
{
Vector2 originBToA = originA - originB;
float denominator = VectorE.PerpDot(directionA, directionB);
float perpDotA = VectorE.PerpDot(directionA, originBToA);
float perpDotB = VectorE.PerpDot(directionB, originBToA);
bool codirected = Vector2.Dot(directionA, directionB) > 0;
if (Mathf.Abs(denominator) < Geometry.Epsilon)
{
// Parallel
float originBProjection = Vector2.Dot(directionA, originBToA);
if (Mathf.Abs(perpDotA) > Geometry.Epsilon || Mathf.Abs(perpDotB) > Geometry.Epsilon)
{
// Not collinear
if (codirected)
{
if (originBProjection > -Geometry.Epsilon)
{
// Projection of originA is on rayB
pointA = originA;
pointB = originB + directionA*originBProjection;
return;
}
else
{
pointA = originA - directionA*originBProjection;
pointB = originB;
return;
}
}
else
{
if (originBProjection > 0)
{
pointA = originA;
pointB = originB;
return;
}
else
{
// Projection of originA is on rayB
pointA = originA;
pointB = originB + directionA*originBProjection;
return;
}
}
}
// Collinear
if (codirected)
{
// Ray intersection
if (originBProjection > -Geometry.Epsilon)
{
// Projection of originA is on rayB
pointA = pointB = originA;
return;
}
else
{
pointA = pointB = originB;
return;
}
}
else
{
if (originBProjection > 0)
{
// No intersection
pointA = originA;
pointB = originB;
return;
}
else
{
// Segment intersection
pointA = pointB = originA;
return;
}
}
}
// Not parallel
float distanceA = perpDotB/denominator;
float distanceB = perpDotA/denominator;
if (distanceA < -Geometry.Epsilon || distanceB < -Geometry.Epsilon)
{
// No intersection
if (codirected)
{
float originAProjection = Vector2.Dot(directionB, originBToA);
if (originAProjection > -Geometry.Epsilon)
{
pointA = originA;
pointB = originB + directionB*originAProjection;
return;
}
float originBProjection = -Vector2.Dot(directionA, originBToA);
if (originBProjection > -Geometry.Epsilon)
{
pointA = originA + directionA*originBProjection;
pointB = originB;
return;
}
pointA = originA;
pointB = originB;
return;
}
else
{
if (distanceA > -Geometry.Epsilon)
{
float originBProjection = -Vector2.Dot(directionA, originBToA);
if (originBProjection > -Geometry.Epsilon)
{
pointA = originA + directionA*originBProjection;
pointB = originB;
return;
}
}
else if (distanceB > -Geometry.Epsilon)
{
float originAProjection = Vector2.Dot(directionB, originBToA);
if (originAProjection > -Geometry.Epsilon)
{
pointA = originA;
pointB = originB + directionB*originAProjection;
return;
}
}
pointA = originA;
pointB = originB;
return;
}
}
// Point intersection
pointA = pointB = originA + directionA*distanceA;
}
#endregion Ray-Ray
#region Ray-Segment
/// <summary>
/// Finds closest points on the ray and the segment
/// </summary>
public static void RaySegment(Ray2D ray, Segment2 segment, out Vector2 rayPoint, out Vector2 segmentPoint)
{
RaySegment(ray.origin, ray.direction, segment.a, segment.b, out rayPoint, out segmentPoint);
}
/// <summary>
/// Finds closest points on the ray and the segment
/// </summary>
public static void RaySegment(Vector2 rayOrigin, Vector2 rayDirection, Vector2 segmentA, Vector2 segmentB,
out Vector2 rayPoint, out Vector2 segmentPoint)
{
Vector2 segmentDirection = segmentB - segmentA;
Vector2 segmentAToOrigin = rayOrigin - segmentA;
float denominator = VectorE.PerpDot(rayDirection, segmentDirection);
float perpDotA = VectorE.PerpDot(rayDirection, segmentAToOrigin);
// Normalized direction gives more stable results
float perpDotB = VectorE.PerpDot(segmentDirection.normalized, segmentAToOrigin);
if (Mathf.Abs(denominator) < Geometry.Epsilon)
{
// Parallel
float segmentAProjection = -Vector2.Dot(rayDirection, segmentAToOrigin);
Vector2 rayOriginToSegmentB = segmentB - rayOrigin;
float segmentBProjection = Vector2.Dot(rayDirection, rayOriginToSegmentB);
if (Mathf.Abs(perpDotA) > Geometry.Epsilon || Mathf.Abs(perpDotB) > Geometry.Epsilon)
{
// Not collinear
if (segmentAProjection > -Geometry.Epsilon && segmentBProjection > -Geometry.Epsilon)
{
if (segmentAProjection < segmentBProjection)
{
rayPoint = rayOrigin + rayDirection*segmentAProjection;
segmentPoint = segmentA;
return;
}
else
{
rayPoint = rayOrigin + rayDirection*segmentBProjection;
segmentPoint = segmentB;
return;
}
}
if (segmentAProjection > -Geometry.Epsilon || segmentBProjection > -Geometry.Epsilon)
{
rayPoint = rayOrigin;
float sqrSegmentLength = segmentDirection.sqrMagnitude;
if (sqrSegmentLength > Geometry.Epsilon)
{
float rayOriginProjection = Vector2.Dot(segmentDirection, segmentAToOrigin)/sqrSegmentLength;
segmentPoint = segmentA + segmentDirection*rayOriginProjection;
}
else
{
segmentPoint = segmentA;
}
return;
}
rayPoint = rayOrigin;
segmentPoint = segmentAProjection > segmentBProjection ? segmentA : segmentB;
return;
}
// Collinear
if (segmentAProjection > -Geometry.Epsilon && segmentBProjection > -Geometry.Epsilon)
{
// Segment intersection
rayPoint = segmentPoint = segmentAProjection < segmentBProjection ? segmentA : segmentB;
return;
}
if (segmentAProjection > -Geometry.Epsilon || segmentBProjection > -Geometry.Epsilon)
{
// Point or segment intersection
rayPoint = segmentPoint = rayOrigin;
return;
}
// No intersection
rayPoint = rayOrigin;
segmentPoint = segmentAProjection > segmentBProjection ? segmentA : segmentB;
return;
}
// Not parallel
float rayDistance = perpDotB/denominator;
float segmentDistance = perpDotA/denominator;
if (rayDistance < -Geometry.Epsilon ||
segmentDistance < -Geometry.Epsilon || segmentDistance > 1 + Geometry.Epsilon)
{
// No intersection
bool codirected = Vector2.Dot(rayDirection, segmentDirection) > 0;
Vector2 segmentBToOrigin;
if (!codirected)
{
PTUtils.Swap(ref segmentA, ref segmentB);
segmentDirection = -segmentDirection;
segmentBToOrigin = segmentAToOrigin;
segmentAToOrigin = rayOrigin - segmentA;
segmentDistance = 1 - segmentDistance;
}
else
{
segmentBToOrigin = rayOrigin - segmentB;
}
float segmentAProjection = -Vector2.Dot(rayDirection, segmentAToOrigin);
float segmentBProjection = -Vector2.Dot(rayDirection, segmentBToOrigin);
bool segmentAOnRay = segmentAProjection > -Geometry.Epsilon;
bool segmentBOnRay = segmentBProjection > -Geometry.Epsilon;
if (segmentAOnRay && segmentBOnRay)
{
if (segmentDistance < 0)
{
rayPoint = rayOrigin + rayDirection*segmentAProjection;
segmentPoint = segmentA;
return;
}
else
{
rayPoint = rayOrigin + rayDirection*segmentBProjection;
segmentPoint = segmentB;
return;
}
}
else if (!segmentAOnRay && segmentBOnRay)
{
if (segmentDistance < 0)
{
rayPoint = rayOrigin;
segmentPoint = segmentA;
return;
}
else if (segmentDistance > 1 + Geometry.Epsilon)
{
rayPoint = rayOrigin + rayDirection*segmentBProjection;
segmentPoint = segmentB;
return;
}
else
{
rayPoint = rayOrigin;
float originProjection = Vector2.Dot(segmentDirection, segmentAToOrigin);
segmentPoint = segmentA + segmentDirection*originProjection/segmentDirection.sqrMagnitude;
return;
}
}
else
{
// Not on ray
rayPoint = rayOrigin;
float originProjection = Vector2.Dot(segmentDirection, segmentAToOrigin);
float sqrSegmentLength = segmentDirection.sqrMagnitude;
if (originProjection < 0)
{
segmentPoint = segmentA;
return;
}
else if (originProjection > sqrSegmentLength)
{
segmentPoint = segmentB;
return;
}
else
{
segmentPoint = segmentA + segmentDirection*originProjection/sqrSegmentLength;
return;
}
}
}
// Point intersection
rayPoint = segmentPoint = segmentA + segmentDirection*segmentDistance;
}
#endregion Ray-Segment
#region Ray-Circle
/// <summary>
/// Finds closest points on the ray and the circle
/// </summary>
public static void RayCircle(Ray2D ray, Circle2 circle, out Vector2 rayPoint, out Vector2 circlePoint)
{
RayCircle(ray.origin, ray.direction, circle.center, circle.radius, out rayPoint, out circlePoint);
}
/// <summary>
/// Finds closest points on the ray and the circle
/// </summary>
public static void RayCircle(Vector2 rayOrigin, Vector2 rayDirection, Vector2 circleCenter, float circleRadius,
out Vector2 rayPoint, out Vector2 circlePoint)
{
Vector2 originToCenter = circleCenter - rayOrigin;
float centerProjection = Vector2.Dot(rayDirection, originToCenter);
if (centerProjection + circleRadius < -Geometry.Epsilon)
{
// No intersection
rayPoint = rayOrigin;
circlePoint = circleCenter - originToCenter.normalized*circleRadius;
return;
}
float sqrDistanceToLine = originToCenter.sqrMagnitude - centerProjection*centerProjection;
float sqrDistanceToIntersection = circleRadius*circleRadius - sqrDistanceToLine;
if (sqrDistanceToIntersection < -Geometry.Epsilon)
{
// No intersection
if (centerProjection < -Geometry.Epsilon)
{
rayPoint = rayOrigin;
circlePoint = circleCenter - originToCenter.normalized*circleRadius;
return;
}
rayPoint = rayOrigin + rayDirection*centerProjection;
circlePoint = circleCenter + (rayPoint - circleCenter).normalized*circleRadius;
return;
}
if (sqrDistanceToIntersection < Geometry.Epsilon)
{
if (centerProjection < -Geometry.Epsilon)
{
// No intersection
rayPoint = rayOrigin;
circlePoint = circleCenter - originToCenter.normalized*circleRadius;
return;
}
// Point intersection
rayPoint = circlePoint = rayOrigin + rayDirection*centerProjection;
return;
}
// Line intersection
float distanceToIntersection = Mathf.Sqrt(sqrDistanceToIntersection);
float distanceA = centerProjection - distanceToIntersection;
if (distanceA < -Geometry.Epsilon)
{
float distanceB = centerProjection + distanceToIntersection;
if (distanceB < -Geometry.Epsilon)
{
// No intersection
rayPoint = rayOrigin;
circlePoint = circleCenter - originToCenter.normalized*circleRadius;
return;
}
// Point intersection
rayPoint = circlePoint = rayOrigin + rayDirection*distanceB;
return;
}
// Two points intersection
rayPoint = circlePoint = rayOrigin + rayDirection*distanceA;
}
#endregion Ray-Circle
#region Segment-Segment
/// <summary>
/// Finds closest points on the segments
/// </summary>
public static void SegmentSegment(Segment2 segment1, Segment2 segment2, out Vector2 segment1Point, out Vector2 segment2Point)
{
SegmentSegment(segment1.a, segment1.b, segment2.a, segment2.b, out segment1Point, out segment2Point);
}
/// <summary>
/// Finds closest points on the segments
/// </summary>
public static void SegmentSegment(Vector2 segment1A, Vector2 segment1B, Vector2 segment2A, Vector2 segment2B,
out Vector2 segment1Point, out Vector2 segment2Point)
{
Vector2 from2ATo1A = segment1A - segment2A;
Vector2 direction1 = segment1B - segment1A;
Vector2 direction2 = segment2B - segment2A;
float segment1Length = direction1.magnitude;
float segment2Length = direction2.magnitude;
bool segment1IsAPoint = segment1Length < Geometry.Epsilon;
bool segment2IsAPoint = segment2Length < Geometry.Epsilon;
if (segment1IsAPoint && segment2IsAPoint)
{
if (segment1A == segment2A)
{
segment1Point = segment2Point = segment1A;
return;
}
segment1Point = segment1A;
segment2Point = segment2A;
return;
}
if (segment1IsAPoint)
{
direction2.Normalize();
segment1Point = segment1A;
segment2Point = PointSegment(segment1A, segment2A, segment2B, direction2, segment2Length);
return;
}
if (segment2IsAPoint)
{
direction1.Normalize();
segment1Point = PointSegment(segment2A, segment1A, segment1B, direction1, segment1Length);
segment2Point = segment2A;
return;
}
direction1.Normalize();
direction2.Normalize();
float denominator = VectorE.PerpDot(direction1, direction2);
float perpDot1 = VectorE.PerpDot(direction1, from2ATo1A);
float perpDot2 = VectorE.PerpDot(direction2, from2ATo1A);
if (Mathf.Abs(denominator) < Geometry.Epsilon)
{
// Parallel
bool codirected = Vector2.Dot(direction1, direction2) > 0;
if (Mathf.Abs(perpDot1) > Geometry.Epsilon || Mathf.Abs(perpDot2) > Geometry.Epsilon)
{
// Not collinear
Vector2 from1ATo2B;
if (!codirected)
{
PTUtils.Swap(ref segment2A, ref segment2B);
direction2 = -direction2;
from1ATo2B = -from2ATo1A;
from2ATo1A = segment1A - segment2A;
}
else
{
from1ATo2B = segment2B - segment1A;
}
float segment2AProjection = -Vector2.Dot(direction1, from2ATo1A);
float segment2BProjection = Vector2.Dot(direction1, from1ATo2B);
bool segment2AIsAfter1A = segment2AProjection > -Geometry.Epsilon;
bool segment2BIsAfter1A = segment2BProjection > -Geometry.Epsilon;
if (!segment2AIsAfter1A && !segment2BIsAfter1A)
{
// 1A------1B
// 2A------2B
segment1Point = segment1A;
segment2Point = segment2B;
return;
}
bool segment2AIsBefore1B = segment2AProjection < segment1Length + Geometry.Epsilon;
bool segment2BIsBefore1B = segment2BProjection < segment1Length + Geometry.Epsilon;
if (!segment2AIsBefore1B && !segment2BIsBefore1B)
{
// 1A------1B
// 2A------2B
segment1Point = segment1B;
segment2Point = segment2A;
return;
}
if (segment2AIsAfter1A && segment2BIsBefore1B)
{
// 1A------1B
// 2A--2B
segment1Point = segment1A + direction1*segment2AProjection;
segment2Point = segment2A;
return;
}
if (segment2AIsAfter1A) // && segment2AIsBefore1B && !segment2BIsBefore1B)
{
// 1A------1B
// 2A------2B
segment1Point = segment1A + direction1*segment2AProjection;
segment2Point = segment2A;
return;
}
else
{
// 1A------1B
// 2A----2B
// 2A----------2B
segment1Point = segment1A;
float segment1AProjection = Vector2.Dot(direction2, from2ATo1A);
segment2Point = segment2A + direction2*segment1AProjection;
return;
}
}
// Collinear
if (codirected)
{
// Codirected
float segment2AProjection = -Vector2.Dot(direction1, from2ATo1A);
if (segment2AProjection > -Geometry.Epsilon)
{
// 1A------1B
// 2A------2B
SegmentSegmentCollinear(segment1A, segment1B, segment2A, out segment1Point, out segment2Point);
return;
}
else
{
// 1A------1B
// 2A------2B
SegmentSegmentCollinear(segment2A, segment2B, segment1A, out segment2Point, out segment1Point);
return;
}
}
else
{
// Contradirected
float segment2BProjection = Vector2.Dot(direction1, segment2B - segment1A);
if (segment2BProjection > -Geometry.Epsilon)
{
// 1A------1B
// 2B------2A
SegmentSegmentCollinear(segment1A, segment1B, segment2B, out segment1Point, out segment2Point);
return;
}
else
{
// 1A------1B
// 2B------2A
SegmentSegmentCollinear(segment2B, segment2A, segment1A, out segment2Point, out segment1Point);
return;
}
}
}
// Not parallel
float distance1 = perpDot2/denominator;
float distance2 = perpDot1/denominator;
if (distance1 < -Geometry.Epsilon || distance1 > segment1Length + Geometry.Epsilon ||
distance2 < -Geometry.Epsilon || distance2 > segment2Length + Geometry.Epsilon)
{
// No intersection