-
Notifications
You must be signed in to change notification settings - Fork 1
/
run.py
490 lines (412 loc) · 18.3 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import argparse
import os
import shutil
import time
import math
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
import torch.optim
import torch.utils.data
import torchvision
import torchvision.transforms as transforms
import torchvision.models as models
import numpy as np
from tensorboardX import SummaryWriter
from block import *
from module import *
from networks import *
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='SNN2ANN Training')
parser.add_argument('--dataset', default='CIFAR100', type=str, help='dataset')
parser.add_argument('--data-path', default='../datasets/data_CIFAR100', type=str, help='data path')
parser.add_argument('--class-nums', default=100, type=int, help='class number')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet')
parser.add_argument('--time-steps', default=5, type=int)
parser.add_argument('--spike-unit', default='ReSU', type=str)
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=512, type=int,
metavar='N', help='mini-batch size (default: 512)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 5e-4)')
parser.add_argument('--kaiming-norm', default=False, type=bool, help='use kaiming normalization')
parser.add_argument('--print-freq', '-p', default=100, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--checkpoint-path', default='./checkpoints', type=str, help='data path')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-load', default='', type=str, metavar='PATH',
help='path to training mask (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', default='', metavar='PATH',
help='use pre-trained model')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
best_prec1 = 0
step_change_arr = [100, 150, 175]
tp1 = [];
tp5 = [];
tp1_sp = [];
tp5_sp = [];
ep = [];
lRate = [];
device_num = 8
tp1_tr = [];
tp5_tr = [];
tp1_tr_sp = [];
tp5_tr_sp = [];
losses_tr = [];
losses_tr_sp = [];
losses_eval = [];
losses_eval_sp = [];
def main():
global args, best_prec1, batch_size, device_num
args = parser.parse_args()
time_steps = args.time_steps
batch_size = args.batch_size
arch = args.arch
ckpt_path = args.checkpoint_path
spike_unit = args.spike_unit
kaiming_norm = args.kaiming_norm
cls_nums = args.class_nums
learning_rate = args.lr
weight_decay = args.weight_decay
data_path = args.data_path
dataset = args.dataset.upper()
writer = SummaryWriter('./summaries/'+arch+'_'+dataset+'_'+spike_unit+'_T='+str(time_steps))
if not os.path.exists(ckpt_path):
os.mkdir(ckpt_path)
assert spike_unit in ['ReSU', 'STSU']
# Model
if arch.upper() == 'VGG':
if dataset == 'TINY-IMAGENET':
H = W = 64
downsample_lst = [False, True, True, True, True]
else:
H = W = 32
downsample_lst = [False, False, True, True, True]
channel_lst = [64, 128, 256, 512, 512]
model = VGG(H=H, W=W, C=3, num_classes=cls_nums,
blocks=[VGGBlock_1,VGGBlock_1,VGGBlock_2,
VGGBlock_2,VGGBlock_2],
channels=channel_lst,
downsample=downsample_lst,
T=time_steps, mapping_unit=spike_unit,
kaiming_norm=kaiming_norm)
else:
if dataset == 'TINY-IMAGENET':
H = W = 64
stride_lst = [1, 1, 2, 2, 2]
else:
H = W = 32
stride_lst = [1, 1, 1, 2, 2]
channel_lst = [64, 64, 128, 256, 512]
model = ResNet(H=H, W=W, C=3, num_classes=cls_nums,
strides=stride_lst, channels=channel_lst,
T=time_steps, mapping_unit=spike_unit,
kaiming_norm=kaiming_norm)
print(model)
torch.manual_seed(3)
torch.cuda.manual_seed_all(44)
if device_num < 2:
device = 0
torch.cuda.set_device(device)
model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
# Data loading code
normalize = transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.557, 0.549, 0.5534])
if dataset == 'CIFAR100':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
train_data = torchvision.datasets.CIFAR100(data_path, train=True, download=True, transform=transform_train)
transform_test = transforms.Compose([
transforms.ToTensor(),
normalize,
])
val_data = torchvision.datasets.CIFAR100(data_path, train=False, download=True, transform=transform_test)
elif dataset == 'CIFAR10':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
train_data = torchvision.datasets.CIFAR10(data_path, train=True, download=True, transform=transform_train)
transform_test = transforms.Compose([
transforms.ToTensor(),
normalize,
])
val_data = torchvision.datasets.CIFAR10(data_path, train=False, download=True, transform=transform_test)
elif dataset == 'TINY-IMAGENET':
transform_train = transforms.Compose([
#transforms.RandomResizedCrop(224),
transforms.RandomCrop(64, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
train_path = os.path.join(data_path,'train')
train_data =torchvision.datasets.ImageFolder(root=train_path, transform=transform_train)
transform_test = transforms.Compose([
transforms.ToTensor(),
normalize,
])
val_path = os.path.join(data_path, 'val')
val_data = torchvision.datasets.ImageFolder(root=val_path, transform=transform_test)
else:
raise Exception("Choose a dataset from CIFAR10, CIFAR100, or Tiny-ImageNet.")
train_loader = torch.utils.data.DataLoader(train_data,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True)
val_loader = torch.utils.data.DataLoader(val_data, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers,
pin_memory=False)
criterion_en = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
if os.path.exists(args.pretrained):
print("=> loading pretrained model '{}'".format(args.pretrained))
checkpoint = torch.load(args.pretrained)
model.load_state_dict(checkpoint, strict=False)
else:
print("=> no pretrained model found at '{}'".format(args.pretrained))
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'], strict=False)
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch)
ep.append(epoch)
# train for one epoch
start_time = time.time()
loss_cnn, loss_snn, acc_cnn, acc_snn = train(train_loader, model, criterion_en, optimizer, epoch, time_steps=time_steps, writer=writer)
# penalty = penalty * 2.0
end_time = time.time()
print('Train cost: {} sec/epoch'.format(end_time-start_time))
# evaluate on validation set
tr_loss = {'SNN-branch':loss_snn.avg,'CNN-branch':loss_cnn.avg}
tr_acc = {'SNN-branch':acc_snn.avg,'CNN-branch':acc_cnn.avg}
writer.add_scalars('Train Loss', tr_loss, epoch)
writer.add_scalars('Train Top-1 Acc', tr_acc, epoch)
start_time = time.time()
prec1 = validate(val_loader, model, criterion_en, time_steps=time_steps, epoch=epoch, writer=writer)
end_time = time.time()
print('Eval cost: {} sec/epoch'.format(end_time-start_time))
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_file = dataset+'_'+arch.upper()+'_'+'T='+str(time_steps)+'_'+'epoch='+str(epoch)+'.pth.tar'
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, is_best, ckpt_path, save_file)
for k in range(0, args.epochs - args.start_epoch):
print('Epoch: [{0}/{1}]\t'
'LR:{2}\t'
'Prec@1 {top1:.3f} \t'
'Prec@5 {top5:.3f} \t'
'En_Loss_Eval {losses_en_eval: .4f} \t'
'Prec@1_tr {top1_tr:.3f} \t'
'Prec@5_tr {top5_tr:.3f} \t'
'En_Loss_train {losses_en: .4f}'.format(
ep[k], args.epochs, lRate[k], top1=tp1[k], top5=tp5[k], losses_en_eval=losses_eval[k], top1_tr=tp1_tr[k],
top5_tr=tp5_tr[k], losses_en=losses_tr[k]))
writer.close()
def train(train_loader, model, criterion_en, optimizer, epoch, time_steps, writer):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
top1_tr = AverageMeter()
top5_tr = AverageMeter()
losses_en = AverageMeter()
top1_tr_sp = AverageMeter()
top5_tr_sp = AverageMeter()
losses_en_sp = AverageMeter()
top1_tr_sps = AverageMeter()
top5_tr_sps = AverageMeter()
losses_en_sps = AverageMeter()
# switch to train mode
model.train()
for module in model.modules():
module.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
data_time.update(time.time() - end)
target = target.cuda()
labels = Variable(target.cuda())
if device_num < 2:
input_var = Variable(input.cuda())
else:
input_var = torch.autograd.Variable(input.cuda())
optimizer.zero_grad() # Clear gradients w.r.t. parameters
output, output_sp = model(input_var, steps=time_steps, epoch=epoch, training=True)
boosting = False
targetN = output.data.clone().zero_().cuda()
targetN.scatter_(1, target.unsqueeze(1), 1)
targetN = Variable(targetN.type(torch.cuda.FloatTensor))
loss_en = criterion_en(output, labels).cuda()
loss_sp = criterion_en(output_sp, labels).cuda()
loss = loss_en
loss.backward(retain_graph=False)
optimizer.step()
total_loss = loss
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
prec1_tr, prec5_tr = accuracy(output.data, target, topk=(1, 5))
losses_en.update(loss_en.item(), input.size(0))
top1_tr.update(prec1_tr.item(), input.size(0))
top5_tr.update(prec5_tr.item(), input.size(0))
prec1_tr_sp, prec5_tr_sp = accuracy(output_sp.data, target, topk=(1, 5))
top1_tr_sp.update(prec1_tr_sp.item(), input.size(0))
top5_tr_sp.update(prec5_tr_sp.item(), input.size(0))
losses_en_sp.update(loss_sp.item(), input.size(0))
batch_time.update(time.time() - end)
end = time.time()
if i % 20 == 0:
print('iter: {}, cnn_loss: {}, spike loss: {}'.format(i, loss_en.item(), loss_sp.item()))
print('Epoch: [{0}] Prec@1 {top1_tr.avg:.3f} Prec@5 {top5_tr.avg:.3f} Entropy_Loss {loss_en.avg:.4f}'
.format(epoch, top1_tr=top1_tr, top5_tr=top5_tr, loss_en=losses_en))
print('SNN: Epoch: [{0}] Prec@1 {top1_tr.avg:.3f} Prec@5 {top5_tr.avg:.3f} Entropy_Loss {loss_en.avg:.4f}'
.format(epoch, top1_tr=top1_tr_sp, top5_tr=top5_tr_sp, loss_en=losses_en_sp))
losses_tr.append(losses_en.avg)
tp1_tr.append(top1_tr.avg)
tp5_tr.append(top5_tr.avg)
return losses_en, losses_en_sp, top1_tr, top1_tr_sp
def validate(val_loader, model, criterion_en, time_steps, epoch, writer):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
losses_en_eval = AverageMeter()
losses_cnn = AverageMeter()
top1_cnn = AverageMeter()
top5_cnn = AverageMeter()
losses_en_eval_cnn = AverageMeter()
if isinstance(model, torch.nn.DataParallel):
model = model.module
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
# measure data loading time
data_time.update(time.time() - end)
labels = Variable(target.cuda())
target = target.cuda()
if device_num < 2:
input_var = Variable(input.cuda())
else:
input_var = torch.autograd.Variable(input.cuda())
with torch.no_grad():
output_cnn, output = model(input=input_var, steps=time_steps, epoch=epoch, training=False)
targetN = output.data.clone().zero_().cuda()
targetN.scatter_(1, target.unsqueeze(1), 1)
targetN = Variable(targetN.type(torch.cuda.FloatTensor))
loss_en = criterion_en(output, labels).cuda()
loss_en_cnn = criterion_en(output_cnn, labels).cuda()
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
prec1_cnn, prec5_cnn = accuracy(output_cnn.data, target, topk=(1, 5))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
losses_en_eval.update(loss_en.item(), input.size(0))
top1_cnn.update(prec1_cnn.item(), input.size(0))
top5_cnn.update(prec5_cnn.item(), input.size(0))
losses_en_eval_cnn.update(loss_en_cnn.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
val_sq_loss = {'SNN-branch':losses.avg, 'CNN-branch':losses_cnn.avg}
val_loss = {'SNN-branch':losses_en_eval.avg, 'CNN-branch':losses_en_eval_cnn.avg}
val_acc = {'SNN-branch':top1.avg, 'CNN-branch':top1_cnn.avg}
writer.add_scalars('Val Loss (CE)', val_loss, epoch)
writer.add_scalars('Val Loss (MSE)', val_sq_loss, epoch)
writer.add_scalars('Val Top-1 Acc', val_acc, epoch)
vth_dict = {}
for i, (name, param) in enumerate(model.named_parameters()):
if 'Vth' in name:
Vth_avg = torch.mean(param.data)
vth_dict[name] = Vth_avg
writer.add_scalars('Change of Vth', vth_dict, epoch)
print('CNN Test: Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Entropy_Loss {losses_en_eval.avg:.4f}'
.format(top1=top1_cnn, top5=top5_cnn, losses_en_eval=losses_en_eval_cnn))
print('SNN Test: Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Entropy_Loss {losses_en_eval.avg:.4f}'
.format(top1=top1, top5=top5, losses_en_eval=losses_en_eval))
tp1.append(top1.avg)
tp5.append(top5.avg)
losses_eval.append(losses_en_eval.avg)
return top1.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum = self.sum + val * n
self.count = self.count + n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
for param_group in optimizer.param_groups:
if epoch in step_change_arr:
param_group['lr'] = param_group['lr']*0.1
lRate.append(param_group['lr'])
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].float().sum()
res.append(correct_k.mul_(100.0 / batch_size))
return res
def save_checkpoint(state, is_best, ckpt_path, filename='model.pth.tar'):
save_path1 = os.path.join(ckpt_path, filename)
torch.save(state, save_path1)
if is_best:
save_path2 = os.path.join(ckpt_path, 'model_best.pth.tar')
shutil.copyfile(save_path1, save_path2)
if __name__ == '__main__':
main()