forked from ckolivas/cgminer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
libbitfury.c
387 lines (333 loc) · 10.2 KB
/
libbitfury.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
/*
* Copyright 2014 Con Kolivas
* Copyright 2013 Andrew Smith
* Copyright 2013 bitfury
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "miner.h"
#include "driver-bitfury.h"
#include "libbitfury.h"
#include "sha2.h"
void ms3steps(uint32_t *p)
{
uint32_t a, b, c, d, e, f, g, h, new_e, new_a;
int i;
a = p[0];
b = p[1];
c = p[2];
d = p[3];
e = p[4];
f = p[5];
g = p[6];
h = p[7];
for (i = 0; i < 3; i++) {
new_e = p[i+16] + sha256_k[i] + h + CH(e,f,g) + SHA256_F2(e) + d;
new_a = p[i+16] + sha256_k[i] + h + CH(e,f,g) + SHA256_F2(e) +
SHA256_F1(a) + MAJ(a,b,c);
d = c;
c = b;
b = a;
a = new_a;
h = g;
g = f;
f = e;
e = new_e;
}
p[15] = a;
p[14] = b;
p[13] = c;
p[12] = d;
p[11] = e;
p[10] = f;
p[9] = g;
p[8] = h;
}
uint32_t decnonce(uint32_t in)
{
uint32_t out;
/* First part load */
out = (in & 0xFF) << 24;
in >>= 8;
/* Byte reversal */
in = (((in & 0xaaaaaaaa) >> 1) | ((in & 0x55555555) << 1));
in = (((in & 0xcccccccc) >> 2) | ((in & 0x33333333) << 2));
in = (((in & 0xf0f0f0f0) >> 4) | ((in & 0x0f0f0f0f) << 4));
out |= (in >> 2) & 0x3FFFFF;
/* Extraction */
if (in & 1)
out |= (1 << 23);
if (in & 2)
out |= (1 << 22);
out -= 0x800004;
return out;
}
/* Test vectors to calculate (using address-translated loads) */
static unsigned int atrvec[] = {
0xb0e72d8e, 0x1dc5b862, 0xe9e7c4a6, 0x3050f1f5, 0x8a1a6b7e, 0x7ec384e8, 0x42c1c3fc, 0x8ed158a1, /* MIDSTATE */
0,0,0,0,0,0,0,0,
0x8a0bb7b7, 0x33af304f, 0x0b290c1a, 0xf0c4e61f, /* WDATA: hashMerleRoot[7], nTime, nBits, nNonce */
};
static bool atrvec_set;
void bitfury_work_to_payload(struct bitfury_payload *p, struct work *work)
{
memcpy(p->midstate, work->midstate, 32);
p->m7 = *(unsigned int *)(work->data + 64);
p->ntime = *(unsigned int *)(work->data + 68);
p->nbits = *(unsigned int *)(work->data + 72);
applog(LOG_INFO, "INFO nonc: %08x bitfury_scanHash MS0: %08x, ", p->nnonce,
((unsigned int *)work->midstate)[0]);
applog(LOG_INFO, "INFO merkle[7]: %08x, ntime: %08x, nbits: %08x", p->m7,
p->ntime, p->nbits);
}
/* Configuration registers - control oscillators and such stuff. PROGRAMMED when
* magic number matches, UNPROGRAMMED (default) otherwise */
void spi_config_reg(struct bitfury_info *info, int cfgreg, int ena)
{
static const uint8_t enaconf[4] = { 0xc1, 0x6a, 0x59, 0xe3 };
static const uint8_t disconf[4] = { 0, 0, 0, 0 };
if (ena)
spi_add_data(info, 0x7000 + cfgreg * 32, enaconf, 4);
else
spi_add_data(info, 0x7000 + cfgreg * 32, disconf, 4);
}
void spi_set_freq(struct bitfury_info *info)
{
uint64_t freq;
const uint8_t *osc6 = (unsigned char *)&freq;
freq = (1ULL << info->osc6_bits) - 1ULL;
spi_add_data(info, 0x6000, osc6, 8); /* Program internal on-die slow oscillator frequency */
}
#define FIRST_BASE 61
#define SECOND_BASE 4
void spi_send_conf(struct bitfury_info *info)
{
const int8_t nfu_counters[16] = { 64, 64, SECOND_BASE, SECOND_BASE+4, SECOND_BASE+2,
SECOND_BASE+2+16, SECOND_BASE, SECOND_BASE+1, (FIRST_BASE)%65, (FIRST_BASE+1)%65,
(FIRST_BASE+3)%65, (FIRST_BASE+3+16)%65, (FIRST_BASE+4)%65, (FIRST_BASE+4+4)%65,
(FIRST_BASE+3+3)%65, (FIRST_BASE+3+1+3)%65 };
int i;
for (i = 7; i <= 11; i++)
spi_config_reg(info, i, 0);
spi_config_reg(info, 6, 1); /* disable OUTSLK */
spi_config_reg(info, 4, 1); /* Enable slow oscillator */
for (i = 1; i <= 3; ++i)
spi_config_reg(info, i, 0);
/* Program counters correctly for rounds processing, here it should
* start consuming power */
spi_add_data(info, 0x0100, nfu_counters, 16);
}
void spi_send_init(struct bitfury_info *info)
{
/* Prepare internal buffers */
/* PREPARE BUFFERS (INITIAL PROGRAMMING) */
unsigned int w[16];
if (!atrvec_set) {
atrvec_set = true;
ms3steps(atrvec);
}
memset(w, 0, sizeof(w));
w[3] = 0xffffffff;
w[4] = 0x80000000;
w[15] = 0x00000280;
spi_add_data(info, 0x1000, w, 16 * 4);
spi_add_data(info, 0x1400, w, 8 * 4);
memset(w, 0, sizeof(w));
w[0] = 0x80000000;
w[7] = 0x100;
spi_add_data(info, 0x1900, w, 8 * 4); /* Prepare MS and W buffers! */
spi_add_data(info, 0x3000, atrvec, 19 * 4);
}
void spi_clear_buf(struct bitfury_info *info)
{
info->spibufsz = 0;
}
void spi_add_buf(struct bitfury_info *info, const void *buf, const int sz)
{
if (unlikely(info->spibufsz + sz > SPIBUF_SIZE)) {
applog(LOG_WARNING, "SPI bufsize overflow!");
return;
}
memcpy(&info->spibuf[info->spibufsz], buf, sz);
info->spibufsz += sz;
}
void spi_add_break(struct bitfury_info *info)
{
spi_add_buf(info, "\x4", 1);
}
void spi_add_fasync(struct bitfury_info *info, int n)
{
int i;
for (i = 0; i < n; i++)
spi_add_buf(info, "\x5", 1);
}
static void spi_add_buf_reverse(struct bitfury_info *info, const char *buf, const int sz)
{
int i;
for (i = 0; i < sz; i++) { // Reverse bit order in each byte!
unsigned char p = buf[i];
p = ((p & 0xaa) >> 1) | ((p & 0x55) << 1);
p = ((p & 0xcc) >> 2) | ((p & 0x33) << 2);
p = ((p & 0xf0) >> 4) | ((p & 0x0f) << 4);
info->spibuf[info->spibufsz + i] = p;
}
info->spibufsz += sz;
}
void spi_add_data(struct bitfury_info *info, uint16_t addr, const void *buf, int len)
{
unsigned char otmp[3];
if (len < 4 || len > 128) {
applog(LOG_WARNING, "Can't add SPI data size %d", len);
return;
}
len /= 4; /* Strip */
otmp[0] = (len - 1) | 0xE0;
otmp[1] = (addr >> 8) & 0xFF;
otmp[2] = addr & 0xFF;
spi_add_buf(info, otmp, 3);
len *= 4;
spi_add_buf_reverse(info, buf, len);
}
// Bit-banging reset... Each 3 reset cycles reset first chip in chain
bool spi_reset(struct cgpu_info *bitfury, struct bitfury_info *info)
{
struct mcp_settings *mcp = &info->mcp;
int r;
// SCK_OVRRIDE
mcp->value.pin[NFU_PIN_SCK_OVR] = MCP2210_GPIO_PIN_HIGH;
mcp->direction.pin[NFU_PIN_SCK_OVR] = MCP2210_GPIO_OUTPUT;
mcp->designation.pin[NFU_PIN_SCK_OVR] = MCP2210_PIN_GPIO;
if (!mcp2210_set_gpio_settings(bitfury, mcp))
return false;
for (r = 0; r < 16; ++r) {
char buf[1] = {0x81}; // will send this waveform: - _ _ _ _ _ _ -
unsigned int length = 1;
if (!mcp2210_spi_transfer(bitfury, &info->mcp, buf, &length))
return false;
}
// Deactivate override
mcp->direction.pin[NFU_PIN_SCK_OVR] = MCP2210_GPIO_INPUT;
if (!mcp2210_set_gpio_settings(bitfury, mcp))
return false;
return true;
}
bool mcp_spi_txrx(struct cgpu_info *bitfury, struct bitfury_info *info)
{
unsigned int length, sendrcv;
int offset = 0;
length = info->spibufsz;
applog(LOG_DEBUG, "%s %d: SPI sending %u bytes total", bitfury->drv->name,
bitfury->device_id, length);
while (length > MCP2210_TRANSFER_MAX) {
sendrcv = MCP2210_TRANSFER_MAX;
if (!mcp2210_spi_transfer(bitfury, &info->mcp, info->spibuf + offset, &sendrcv))
return false;
if (sendrcv != MCP2210_TRANSFER_MAX) {
applog(LOG_DEBUG, "%s %d: Send/Receive size mismatch sent %d received %d",
bitfury->drv->name, bitfury->device_id, MCP2210_TRANSFER_MAX, sendrcv);
}
length -= MCP2210_TRANSFER_MAX;
offset += MCP2210_TRANSFER_MAX;
}
sendrcv = length;
if (!mcp2210_spi_transfer(bitfury, &info->mcp, info->spibuf + offset, &sendrcv))
return false;
if (sendrcv != length) {
applog(LOG_WARNING, "%s %d: Send/Receive size mismatch sent %d received %d",
bitfury->drv->name, bitfury->device_id, length, sendrcv);
return false;
}
return true;
}
#define READ_WRITE_BYTES_SPI0 0x31
bool ftdi_spi_txrx(struct cgpu_info *bitfury, struct bitfury_info *info)
{
int err, amount, len;
uint16_t length;
char buf[1024];
len = info->spibufsz;
length = info->spibufsz - 1; //FTDI length is shifted by one 0x0000 = one byte
buf[0] = READ_WRITE_BYTES_SPI0;
buf[1] = length & 0x00FF;
buf[2] = (length & 0xFF00) >> 8;
memcpy(&buf[3], info->spibuf, info->spibufsz);
info->spibufsz += 3;
err = usb_write(bitfury, buf, info->spibufsz, &amount, C_BXM_SPITX);
if (err || amount != (int)info->spibufsz) {
applog(LOG_ERR, "%s %d: SPI TX error %d, sent %d of %d", bitfury->drv->name,
bitfury->device_id, err, amount, info->spibufsz);
return false;
}
info->spibufsz = len;
/* We shouldn't even get a timeout error on reads in spi mode */
err = usb_read(bitfury, info->spibuf, len, &amount, C_BXM_SPIRX);
if (err || amount != len) {
applog(LOG_ERR, "%s %d: SPI RX error %d, read %d of %d", bitfury->drv->name,
bitfury->device_id, err, amount, info->spibufsz);
return false;
}
amount = usb_buffer_size(bitfury);
if (amount) {
applog(LOG_ERR, "%s %d: SPI RX Extra read buffer size %d", bitfury->drv->name,
bitfury->device_id, amount);
usb_buffer_clear(bitfury);
return false;
}
return true;
}
#define BT_OFFSETS 3
bool bitfury_checkresults(struct thr_info *thr, struct work *work, uint32_t nonce)
{
const uint32_t bf_offsets[] = {-0x800000, 0, -0x400000};
int i;
for (i = 0; i < BT_OFFSETS; i++) {
uint32_t noffset = nonce + bf_offsets[i];
if (test_nonce(work, noffset)) {
submit_tested_work(thr, work);
return true;
}
}
return false;
}
/* Currently really only supports 2 chips, so chip_n can only be 0 or 1 */
bool libbitfury_sendHashData(struct thr_info *thr, struct cgpu_info *bitfury,
struct bitfury_info *info, int chip_n)
{
unsigned newbuf[17];
unsigned *oldbuf = &info->oldbuf[17 * chip_n];
struct bitfury_payload *p = &info->payload[chip_n];
unsigned int localvec[20];
/* Programming next value */
memcpy(localvec, p, 20 * 4);
ms3steps(localvec);
spi_clear_buf(info);
spi_add_break(info);
spi_add_fasync(info, chip_n);
spi_add_data(info, 0x3000, (void*)localvec, 19 * 4);
if (!info->spi_txrx(bitfury, info))
return false;
memcpy(newbuf, info->spibuf + 4 + chip_n, 17 * 4);
info->job_switched[chip_n] = newbuf[16] != oldbuf[16];
if (likely(info->second_run[chip_n])) {
if (info->job_switched[chip_n]) {
int i;
for (i = 0; i < 16; i++) {
if (oldbuf[i] != newbuf[i] && info->owork[chip_n]) {
uint32_t nonce; //possible nonce
nonce = decnonce(newbuf[i]);
if (bitfury_checkresults(thr, info->owork[chip_n], nonce)) {
info->submits[chip_n]++;
info->nonces++;
}
}
}
memcpy(oldbuf, newbuf, 17 * 4);
}
} else
info->second_run[chip_n] = true;
cgsleep_ms(BITFURY_REFRESH_DELAY);
return true;
}