-
Notifications
You must be signed in to change notification settings - Fork 0
/
gan.py
156 lines (122 loc) · 5.38 KB
/
gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import os
import numpy as np
import math
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch
parser = argparse.ArgumentParser()
parser.add_argument('--n_epochs', type=int, default=100, help='number of epochs of training')
parser.add_argument('--batch_size', type=int, default=64, help='size of the batches')
parser.add_argument('--lr', type=float, default=0.0002, help='adam: learning rate')
parser.add_argument('--beta1', type=float, default=0.5, help='adam: decay of first order momentum of gradient')
parser.add_argument('--beta2', type=float, default=0.999, help='adam: decay of second order momentum of gradient')
parser.add_argument('--latent_dim', type=int, default=100, help='dimensionality of the latent space')
parser.add_argument('--img_size', type=int, default=28, help='size of each image dimension')
parser.add_argument('--channels', type=int, default=1, help='number of image channels')
parser.add_argument('--sample_interval', type=int, default=400, help='interval betwen image samples')
parser.add_argument('--results_dir', type=str, default='./result_images', help='directory to save the results')
args = parser.parse_args()
print(args)
os.makedirs(args.results_dir, exist_ok=True)
C,H,W = args.channels, args.img_size, args.img_size
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.model = nn.Sequential(
nn.Linear(args.latent_dim, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 1024),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(1024, C*H*W),
nn.Tanh(),
)
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), C,H,W)
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
nn.Linear(C*H*W, 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
nn.Sigmoid()
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
probability = self.model(img_flat)
return probability
# Loss function
adversarial_loss = torch.nn.BCELoss()
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
if torch.cuda.is_available():
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
# Configure data loader
os.makedirs('../../data', exist_ok=True)
dataloader = torch.utils.data.DataLoader(
datasets.MNIST('../../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])),
batch_size=args.batch_size, shuffle=True, drop_last=True)
# optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))
# ----------
# Training
# ----------
for epoch in range(args.n_epochs):
for i, (imgs, _) in enumerate(dataloader):
Batch_size = args.batch_size
# Adversarial ground truths
valid = Variable(torch.ones(Batch_size, 1).cuda(),requires_grad=False)
fake = Variable(torch.zeros(Batch_size, 1).cuda(),requires_grad=False)
# Configure input
real_imgs = Variable(imgs.type(torch.FloatTensor).cuda())
# -----------------
# Train Generator
# -----------------
optimizer_G.zero_grad()
# Sample noise as generator input
z = Variable(torch.FloatTensor(np.random.normal(0, 1, (Batch_size, args.latent_dim))).cuda())
# Generate a batch of images
gen_imgs = generator(z)
# Loss measures generator's ability to fool the discriminator
PRO_D_fake = discriminator(gen_imgs)
g_loss = adversarial_loss(PRO_D_fake, valid)
g_loss.backward()
optimizer_G.step()
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Measure discriminator's ability to classify real from generated samples
PRO_D_real = discriminator(real_imgs)
PRO_D_fake = discriminator(gen_imgs.detach())
real_loss = adversarial_loss(PRO_D_real, valid)
fake_loss = adversarial_loss(PRO_D_fake, fake)
d_loss = (real_loss + fake_loss)
d_loss.backward()
optimizer_D.step()
print ("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, args.n_epochs, i, len(dataloader),d_loss.data.cpu(), g_loss.data.cpu()))
print ("[PRO_D_real: %f ] [PRO_D_fake: %f] " %( torch.mean(PRO_D_real.data.cpu()),torch.mean(PRO_D_fake.data.cpu()) ))
batches_done = epoch * len(dataloader) + i
if batches_done % args.sample_interval == 0:
save_image(gen_imgs.data[:25], args.results_dir+'/%d-%d.png' % (epoch, batches_done), nrow=5, normalize=True)