-
Notifications
You must be signed in to change notification settings - Fork 4.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Mxnet模型使用mxnet2ncnn的时候遇到问题 #264
Comments
我也遇到这个问题,请问你那边解决了吗? |
+1 |
1 similar comment
+1 |
ncnn工具有一直在更新,所以重新下载编译能解决 |
_minus_scalar not supported yet! scalar=127.5_mul_scalar not supported yet! scalar=0.0078125BlockGrad not supported yet! axis=0begin=0end=20slice_axis not supported yet! axis=0begin=20end=40slice_axis not supported yet! axis=0begin=40end=60_plus_scalar not supported yet! scalar=0.3MakeLoss not supported yet! 我也遇到类似的问题 |
@Ackesnal 请问你解决了吗? |
BlockGrad slice_axis MakeLoss 等训练用的 op 可以自定义 noop 注册解决 |
在进行模型转换的时候报错:
~/ncnn/build/tools/mxnet$ ./mxnet2ncnn model-mobilenet-20180202-symbol.json model-mobilenet-20180202-0159.params
_minus_scalar not supported yet!
#scalar=127.5
_mul_scalar not supported yet!
#scalar=0.0078125
BlockGrad not supported yet!
L2Normalization not supported yet!
#mode=instance
_mul_scalar not supported yet!
#scalar=64.0
L2Normalization not supported yet!
#mode=instance
one_hot not supported yet!
#depth=85164
#off_value=0.0
#on_value=1.0
pick not supported yet!
#axis=1
_div_scalar not supported yet!
#scalar=64.0
_minus_scalar not supported yet!
#scalar=-0.87758256189
_mul_scalar not supported yet!
#scalar=0.87758256189
_rminus_scalar not supported yet!
#scalar=1.0
sqrt not supported yet!
_mul_scalar not supported yet!
#scalar=0.479425538604
elemwise_sub not supported yet!
_mul_scalar not supported yet!
#scalar=64.0
_minus_scalar not supported yet!
#scalar=15.3416172353
where not supported yet!
elemwise_sub not supported yet!
expand_dims not supported yet!
#axis=1
broadcast_mul not supported yet!
有很多mxnet模型里的操作似乎ncnn不支持。但是如果把这些操作去掉,改用in.substract_mean_normalize(mean_vals, norm_vals)等函数处理,那在mxnet2ncnn转换模型的时候又会提示Segmentation fault (core dumped) 「可能是因为模型文件和参数文件是一一对应的,无法只修改模型文件。但是参数是经过训练已经封装好了的,也不能修改。」
想请教一下大神这时候可以怎么办?
还有find_blob_index_by_name xxxx failed这个问题该如何解决?我在xxxx中填的和模型里的名字应该已经一样了,但还是说找不到,可能是什么引起?
The text was updated successfully, but these errors were encountered: