We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
问题描述: 需要对结构化数据进行预测,之前使用caffe训练的时候是把txt文件中的数据读出来写到LMDB中然后进行训练,对应维度是2×8×550,即初始化了一个数组a[2][8][550],将三维数组直接转化为LMDB,那么对应到ncnn的Mat时由于Mat的数据输入只有一个一维的*data,此时应该如何将2×8×550的数据转化到一维?应该按照c->h->w还是h->w->c?
The text was updated successfully, but these errors were encountered:
a[2][8][550] c=2 h=8 w=550 那么就是 Mat m(550 * 8 * 2, a); m = m.reshape(550, 8, 2);
Sorry, something went wrong.
@nihui 搞定了,谢谢大佬的指教!!
No branches or pull requests
问题描述:
需要对结构化数据进行预测,之前使用caffe训练的时候是把txt文件中的数据读出来写到LMDB中然后进行训练,对应维度是2×8×550,即初始化了一个数组a[2][8][550],将三维数组直接转化为LMDB,那么对应到ncnn的Mat时由于Mat的数据输入只有一个一维的*data,此时应该如何将2×8×550的数据转化到一维?应该按照c->h->w还是h->w->c?
The text was updated successfully, but these errors were encountered: