We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
7767517 311 373 Input in0 0 1 in0 Convolution conv_0 1 1 in0 1 0=16 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=432 Swish silu_93 1 1 1 2 Convolution conv_1 1 1 2 3 0=32 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=4608 Swish silu_94 1 1 3 4 Convolution conv_2 1 1 4 5 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=1024 Swish silu_95 1 1 5 6 Slice split_0 1 2 6 7 8 -23300=2,16,16 1=0 Split splitncnn_0 1 3 8 9 10 11 Convolution conv_3 1 1 11 12 0=8 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1152 Swish silu_96 1 1 12 13 Convolution conv_4 1 1 13 14 0=16 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1152 Swish silu_97 1 1 14 15 BinaryOp add_0 2 1 10 15 16 0=0 Concat cat_0 3 1 7 9 16 17 0=0 Convolution conv_5 1 1 17 18 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=3072 Swish silu_98 1 1 18 19 Convolution conv_6 1 1 19 20 0=64 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=36864 Swish silu_99 1 1 20 21 Convolution conv_7 1 1 21 22 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4096 Swish silu_100 1 1 22 23 Slice split_1 1 2 23 24 25 -23300=2,32,32 1=0 Split splitncnn_1 1 3 25 26 27 28 Convolution conv_8 1 1 28 29 0=16 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=4608 Swish silu_101 1 1 29 30 Convolution conv_9 1 1 30 31 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=4608 Swish silu_102 1 1 31 32 BinaryOp add_1 2 1 27 32 33 0=0 Concat cat_1 3 1 24 26 33 34 0=0 Convolution conv_10 1 1 34 35 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=12288 Swish silu_103 1 1 35 36 Split splitncnn_2 1 2 36 37 38 Convolution conv_11 1 1 38 39 0=128 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=147456 ... Reshape reshape_182 1 1 132 140 0=20 1=20 2=128 ConvolutionDepthWise convdw_199 1 1 140 141 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1152 7=128 BinaryOp add_7 2 1 139 141 142 0=0 Convolution conv_35 1 1 142 143 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=16384 BinaryOp add_8 2 1 125 143 144 0=0 Split splitncnn_15 1 2 144 145 146 Reshape view_188 1 1 272 273 0=400 1=1 Concat cat_17 3 1 261 267 273 274 0=1 Sigmoid sigmoid_178 1 1 274 275 BinaryOp sub_15 1 1 275 276 0=1 1=1 2=2.500000e-01 BinaryOp mul_16 1 1 276 277 0=2 1=1 2=3.141593e+00 Split splitncnn_27 1 3 277 278 279 280 Convolution conv_71 1 1 192 281 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864 Swish silu_158 1 1 281 282 Convolution conv_72 1 1 282 283 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864 Swish silu_159 1 1 283 284 Convolution conv_73 1 1 284 285 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4096 ConvolutionDepthWise convdw_200 1 1 195 286 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=576 7=64 Swish silu_160 1 1 286 287 Convolution conv_74 1 1 287 288 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4096 Swish silu_161 1 1 288 289 ConvolutionDepthWise convdw_201 1 1 289 290 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=576 7=64 Swish silu_162 1 1 290 291 Convolution conv_75 1 1 291 292 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4096 Swish silu_163 1 1 292 293 Convolution conv_76 1 1 293 294 0=7 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=448 Concat cat_18 2 1 285 294 295 0=0 Convolution conv_77 1 1 214 296 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=73728 Swish silu_164 1 1 296 297 Convolution conv_78 1 1 297 298 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864 Swish silu_165 1 1 298 299 Convolution conv_79 1 1 299 300 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4096 ConvolutionDepthWise convdw_202 1 1 217 301 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=1152 7=128 Swish silu_166 1 1 301 302 Convolution conv_80 1 1 302 303 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=8192 Swish silu_167 1 1 303 304 ConvolutionDepthWise convdw_203 1 1 304 305 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=576 7=64 Swish silu_168 1 1 305 306 Convolution conv_81 1 1 306 307 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4096 Swish silu_169 1 1 307 308 Convolution conv_82 1 1 308 309 0=7 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=448 Concat cat_19 2 1 300 309 310 0=0 Convolution conv_83 1 1 252 311 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456 Swish silu_170 1 1 311 312 Convolution conv_84 1 1 312 313 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864 Swish silu_171 1 1 313 314 Convolution conv_85 1 1 314 315 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4096 ConvolutionDepthWise convdw_204 1 1 254 316 0=256 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=2304 7=256 Swish silu_172 1 1 316 317 Convolution conv_86 1 1 317 318 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=16384 Swish silu_173 1 1 318 319 ConvolutionDepthWise convdw_205 1 1 319 320 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=576 7=64 Swish silu_174 1 1 320 321 Convolution conv_87 1 1 321 322 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4096 Swish silu_175 1 1 322 323 Convolution conv_88 1 1 323 324 0=7 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=448 Concat cat_20 2 1 315 324 325 0=0 Reshape view_189 1 1 295 326 0=6400 1=71 Reshape view_190 1 1 310 327 0=1600 1=71 Reshape view_191 1 1 325 328 0=400 1=71 Concat cat_21 3 1 326 327 328 329 0=1 Slice split_10 1 2 329 330 331 -23300=2,64,7 1=0 Reshape view_192 1 1 330 332 0=8400 1=16 2=4 Permute transpose_198 1 1 332 333 0=2 Softmax softmax_181 1 1 333 334 0=0 1=1 Convolution conv_89 1 1 334 335 0=1 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=0 6=16 Reshape view_193 1 1 335 336 0=8400 1=4 MemoryData pnnx_fold_anchor_points.1 0 1 337 0=8400 1=2 Slice split_11 1 2 336 338 339 -23300=2,2,-233 1=0 Split splitncnn_29 1 2 339 340 341 Split splitncnn_28 1 2 338 342 343 UnaryOp cos_17 1 1 279 344 0=10 Split splitncnn_30 1 2 344 345 346 UnaryOp sin_18 1 1 280 347 0=9 Split splitncnn_31 1 2 347 348 349 BinaryOp sub_19 2 1 340 342 350 0=1 BinaryOp div_20 1 1 350 351 0=3 1=1 2=2.000000e+00 Slice split_12 1 2 351 352 353 -23300=2,1,-233 1=0 Split splitncnn_33 1 2 353 354 355 Split splitncnn_32 1 2 352 356 357 BinaryOp mul_21 2 1 354 348 358 0=2 BinaryOp mul_22 2 1 356 345 359 0=2 BinaryOp sub_23 2 1 359 358 360 0=1 BinaryOp mul_24 2 1 355 346 361 0=2 BinaryOp mul_25 2 1 357 349 362 0=2 BinaryOp add_26 2 1 362 361 363 0=0 Concat cat_22 2 1 360 363 364 0=0 BinaryOp add_27 2 1 364 337 365 0=0 BinaryOp add_28 2 1 343 341 366 0=0 Concat cat_23 2 1 365 366 367 0=0 Reshape reshape_183 1 1 255 368 0=8400 1=1 BinaryOp mul_29 2 1 367 368 369 0=2 Sigmoid sigmoid_179 1 1 331 370 Concat cat_24 2 1 369 370 371 0=0 Concat cat_25 2 1 371 278 out0 0=0
_hasGPU = ncnn::get_gpu_count() > 0; _Net->opt.use_fp16_arithmetic = false; _Net->opt.use_fp16_storage = false; _Net->opt.use_fp16_packed = false; _Net->opt.use_vulkan_compute = _hasGPU; // 将其设置为false,推理结果均正常 _Net->opt.use_packing_layout=true; // in_pad 的w, h 均为640 ncnn::Extractor ex = _Net->create_extractor(); ex.input("in0", in_pad); ncnn::Mat out; int extract_result = ex.extract("out0", out);
// 提取box ncnn::Mat out_box; int extract_result = ex.extract(367, out_box); // 提取步长 ncnn::Mat out_stride; ex.extract(368, out_stride); // 提取置信度 ncnn::Mat out_conf; ex.extract(370, out_conf);
_Net->opt.use_vulkan_compute = false;
The text was updated successfully, but these errors were encountered:
No branches or pull requests
简述
detail | 详细描述 | 詳細な説明
_Net->opt.use_vulkan_compute = false;
所有设备推理结果均正常
The text was updated successfully, but these errors were encountered: