-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapp.py
114 lines (93 loc) · 5.18 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import os
if 'OMP_NUM_THREADS' not in os.environ:
os.environ['OMP_NUM_THREADS'] = '16'
import torch
import gradio as gr
from functools import partial
from huggingface_hub import snapshot_download
from freesplatter.webui.runner import FreeSplatterRunner
from freesplatter.webui.tab_img_to_3d import create_interface_img_to_3d
from freesplatter.webui.tab_views_to_3d import create_interface_views_to_3d
from freesplatter.webui.tab_views_to_scene import create_interface_views_to_scene
os.makedirs('./ckpts/Hunyuan3D-1', exist_ok=True)
snapshot_download('tencent/Hunyuan3D-1', repo_type='model', local_dir='./ckpts/Hunyuan3D-1')
torch.set_grad_enabled(False)
device = torch.device('cuda')
runner = FreeSplatterRunner(device)
_HEADER_ = '''
# FreeSplatter 🤗 Gradio Demo
\n\nOfficial demo of the paper [FreeSplatter: Pose-free Gaussian Splatting for Sparse-view 3D Reconstruction](https://arxiv.org/abs/2412.09573). [[Github]](https://github.com/TencentARC/FreeSplatter)
**FreeSplatter** is a feed-forward framework capable of generating high-quality 3D Gaussians from **uncalibrated** sparse-view images and recovering their camera parameters in mere seconds.
'''
_IMG_TO_3D_HELP_ = '''
💡💡💡**Usage Tips:**
- This demo supports various multi-view diffusion models, including [Hunyuan3D](https://github.com/Tencent/Hunyuan3D-1) Std and [Zero123++](https://github.com/SUDO-AI-3D/zero123plus) v1.1/v1.2. You can try different models to get the best result.
- Try clicking the \U0001f3b2\ufe0f button to use a different `Random seed` (default: 42) for diverse outputs.
- In most cases, using `2DGS` leads to better mesh geometry than `3DGS`. Please refer to [2DGS paper](https://arxiv.org/abs/2403.17888).
- You can adjust the views used for reconstruction to alleviate the blurry texture problem caused by multi-view inconsistency.
'''
_VIEWS_TO_3D_HELP_ = '''
💡💡💡**Usage Tips:**
- Our model assumes white-background input images with centered objects. Please enable the `Remove background` option if the images are not white-background.
- Our model assumes an equal focal length for all input images, otherwise the results may be degraded.
'''
_VIEWS_TO_SCENE_HELP_ = '''
💡💡💡**Usage Tips:**
- While our model architecture makes no assumption on the number of input images, the current model was only trained on a two-view setting.
- The input images will be center-cropped and resized to 512x512.
- The visualized camera poses are normalized to make the baseline equal to 1.0.
'''
_CITE_ = r"""
If FreeSplatter is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/FreeSplatter' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/FreeSplatter?style=social)](https://github.com/TencentARC/FreeSplatter)
---
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{xu2024freesplatter,
title={FreeSplatter: Pose-free Gaussian Splatting for Sparse-view 3D Reconstruction},
author={Xu, Jiale and Gao, Shenghua and Shan, Ying},
journal={arXiv preprint},
year={2024}
}
```
📋 **License**
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/spaces/TencentARC/FreeSplatter/blob/main/LICENSE) for details.
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
"""
with gr.Blocks(analytics_enabled=False, title='FreeSplatter Demo', theme=gr.themes.Ocean()) as demo:
gr.Markdown(_HEADER_)
with gr.Tabs() as main_tabs:
with gr.TabItem('Image-to-3D', id='tab_img_to_3d'):
gr.Markdown(_IMG_TO_3D_HELP_)
with gr.Tabs() as sub_tabs_img_to_3d:
with gr.TabItem('Hunyuan3D Std', id='tab_hunyuan3d_std'):
_, var_img_to_3d_hunyuan3d_std = create_interface_img_to_3d(
runner.run_segmentation,
runner.run_img_to_3d,
model='Hunyuan3D Std')
with gr.TabItem('Zero123++ v1.1', id='tab_zero123plus_v11'):
_, var_img_to_3d_zero123plus_v11 = create_interface_img_to_3d(
runner.run_segmentation,
runner.run_img_to_3d,
model='Zero123++ v1.1')
with gr.TabItem('Zero123++ v1.2', id='tab_zero123plus_v12'):
_, var_img_to_3d_zero123plus_v12 = create_interface_img_to_3d(
runner.run_segmentation,
runner.run_img_to_3d,
model='Zero123++ v1.2')
with gr.TabItem('Sparse-view Reconstruction (Object)', id='tab_views_to_3d'):
gr.Markdown(_VIEWS_TO_3D_HELP_)
_, var_views_to_3d = create_interface_views_to_3d(
runner.run_views_to_3d)
with gr.TabItem('Sparse-view Reconstruction (Scene)', id='tab_views_to_scene'):
gr.Markdown(_VIEWS_TO_SCENE_HELP_)
_, var_views_to_scene = create_interface_views_to_scene(
runner.run_views_to_scene)
gr.Markdown(_CITE_)
demo.queue().launch(
share=False,
server_name="0.0.0.0",
server_port=41137,
ssl_verify=False,
)