-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
dijkstra.cpp
180 lines (158 loc) · 5.67 KB
/
dijkstra.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/**
* @file
* @brief [Graph Dijkstras Shortest Path Algorithm
* (Dijkstra's Shortest Path)]
* (https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm)
*
* @author [Ayaan Khan](http://github.com/ayaankhan98)
*
* @details
* Dijkstra's Algorithm is used to find the shortest path from a source
* vertex to all other reachable vertex in the graph.
* The algorithm initially assumes all the nodes are unreachable from the
* given source vertex so we mark the distances of all vertices as INF
* (infinity) from source vertex (INF / infinity denotes unable to reach).
*
* in similar fashion with BFS we assume the distance of source vertex as 0
* and pushes the vertex in a priority queue with it's distance.
* we maintain the priority queue as a min heap so that we can get the
* minimum element at the top of heap
*
* Basically what we do in this algorithm is that we try to minimize the
* distances of all the reachable vertices from the current vertex, look
* at the code below to understand in better way.
*
*/
#include <cassert>
#include <iostream>
#include <limits>
#include <memory>
#include <queue>
#include <utility>
#include <vector>
constexpr int64_t INF = std::numeric_limits<int64_t>::max();
/**
* @namespace graph
* @brief Graph Algorithms
*/
namespace graph {
/**
* @brief Function that add edge between two nodes or vertices of graph
*
* @param u any node or vertex of graph
* @param v any node or vertex of graph
*/
void addEdge(std::vector<std::vector<std::pair<int, int>>> *adj, int u, int v,
int w) {
(*adj)[u - 1].push_back(std::make_pair(v - 1, w));
// (*adj)[v - 1].push_back(std::make_pair(u - 1, w));
}
/**
* @brief Function runs the dijkstra algorithm for some source vertex and
* target vertex in the graph and returns the shortest distance of target
* from the source.
*
* @param adj input graph
* @param s source vertex
* @param t target vertex
*
* @return shortest distance if target is reachable from source else -1 in
* case if target is not reachable from source.
*/
int dijkstra(std::vector<std::vector<std::pair<int, int>>> *adj, int s, int t) {
/// n denotes the number of vertices in graph
int n = adj->size();
/// setting all the distances initially to INF
std::vector<int64_t> dist(n, INF);
/// creating a min heap using priority queue
/// first element of pair contains the distance
/// second element of pair contains the vertex
std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>,
std::greater<std::pair<int, int>>>
pq;
/// pushing the source vertex 's' with 0 distance in min heap
pq.push(std::make_pair(0, s));
/// marking the distance of source as 0
dist[s] = 0;
while (!pq.empty()) {
/// second element of pair denotes the node / vertex
int currentNode = pq.top().second;
/// first element of pair denotes the distance
int currentDist = pq.top().first;
pq.pop();
/// for all the reachable vertex from the currently exploring vertex
/// we will try to minimize the distance
for (std::pair<int, int> edge : (*adj)[currentNode]) {
/// minimizing distances
if (currentDist + edge.second < dist[edge.first]) {
dist[edge.first] = currentDist + edge.second;
pq.push(std::make_pair(dist[edge.first], edge.first));
}
}
}
if (dist[t] != INF) {
return dist[t];
}
return -1;
}
} // namespace graph
/** Function to test the Algorithm */
void tests() {
std::cout << "Initiatinig Predefined Tests..." << std::endl;
std::cout << "Initiating Test 1..." << std::endl;
std::vector<std::vector<std::pair<int, int>>> adj1(
4, std::vector<std::pair<int, int>>());
graph::addEdge(&adj1, 1, 2, 1);
graph::addEdge(&adj1, 4, 1, 2);
graph::addEdge(&adj1, 2, 3, 2);
graph::addEdge(&adj1, 1, 3, 5);
int s = 1, t = 3;
assert(graph::dijkstra(&adj1, s - 1, t - 1) == 3);
std::cout << "Test 1 Passed..." << std::endl;
s = 4, t = 3;
std::cout << "Initiating Test 2..." << std::endl;
assert(graph::dijkstra(&adj1, s - 1, t - 1) == 5);
std::cout << "Test 2 Passed..." << std::endl;
std::vector<std::vector<std::pair<int, int>>> adj2(
5, std::vector<std::pair<int, int>>());
graph::addEdge(&adj2, 1, 2, 4);
graph::addEdge(&adj2, 1, 3, 2);
graph::addEdge(&adj2, 2, 3, 2);
graph::addEdge(&adj2, 3, 2, 1);
graph::addEdge(&adj2, 2, 4, 2);
graph::addEdge(&adj2, 3, 5, 4);
graph::addEdge(&adj2, 5, 4, 1);
graph::addEdge(&adj2, 2, 5, 3);
graph::addEdge(&adj2, 3, 4, 4);
s = 1, t = 5;
std::cout << "Initiating Test 3..." << std::endl;
assert(graph::dijkstra(&adj2, s - 1, t - 1) == 6);
std::cout << "Test 3 Passed..." << std::endl;
std::cout << "All Test Passed..." << std::endl << std::endl;
}
/** Main function */
int main() {
// running predefined tests
tests();
int vertices = int(), edges = int();
std::cout << "Enter the number of vertices : ";
std::cin >> vertices;
std::cout << "Enter the number of edges : ";
std::cin >> edges;
std::vector<std::vector<std::pair<int, int>>> adj(
vertices, std::vector<std::pair<int, int>>());
int u = int(), v = int(), w = int();
while (edges--) {
std::cin >> u >> v >> w;
graph::addEdge(&adj, u, v, w);
}
int s = int(), t = int();
std::cin >> s >> t;
int dist = graph::dijkstra(&adj, s - 1, t - 1);
if (dist == -1) {
std::cout << "Target not reachable from source" << std::endl;
} else {
std::cout << "Shortest Path Distance : " << dist << std::endl;
}
return 0;
}