-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
kohonen_som_topology.cpp
613 lines (554 loc) · 21.3 KB
/
kohonen_som_topology.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
/**
* \addtogroup machine_learning Machine Learning Algorithms
* @{
* \file
* \author [Krishna Vedala](https://github.com/kvedala)
*
* \brief [Kohonen self organizing
* map](https://en.wikipedia.org/wiki/Self-organizing_map) (topological map)
*
* \details
* This example implements a powerful unsupervised learning algorithm called as
* a self organizing map. The algorithm creates a connected network of weights
* that closely follows the given data points. This thus creates a topological
* map of the given data i.e., it maintains the relationship between varipus
* data points in a much higher dimesional space by creating an equivalent in a
* 2-dimensional space.
* <img alt="Trained topological maps for the test cases in the program"
* src="https://raw.githubusercontent.com/TheAlgorithms/C-Plus-Plus/docs/images/machine_learning/2D_Kohonen_SOM.svg"
* />
* \note This C++ version of the program is considerable slower than its [C
* counterpart](https://github.com/kvedala/C/blob/master/machine_learning/kohonen_som_trace.c)
* \note The compiled code is much slower when compiled with MS Visual C++ 2019
* than with GCC on windows
* \see kohonen_som_trace.cpp
*/
#define _USE_MATH_DEFINES //< required for MS Visual C++
#include <algorithm>
#include <array>
#include <cerrno>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <valarray>
#include <vector>
#ifdef _OPENMP // check if OpenMP based parallellization is available
#include <omp.h>
#endif
/**
* Helper function to generate a random number in a given interval.
* \n Steps:
* 1. `r1 = rand() % 100` gets a random number between 0 and 99
* 2. `r2 = r1 / 100` converts random number to be between 0 and 0.99
* 3. scale and offset the random number to given range of \f$[a,b]\f$
*
* \param[in] a lower limit
* \param[in] b upper limit
* \returns random number in the range \f$[a,b]\f$
*/
double _random(double a, double b) {
return ((b - a) * (std::rand() % 100) / 100.f) + a;
}
/**
* Save a given n-dimensional data martix to file.
*
* \param[in] fname filename to save in (gets overwriten without confirmation)
* \param[in] X matrix to save
* \returns 0 if all ok
* \returns -1 if file creation failed
*/
int save_2d_data(const char *fname,
const std::vector<std::valarray<double>> &X) {
size_t num_points = X.size(); // number of rows
size_t num_features = X[0].size(); // number of columns
std::ofstream fp;
fp.open(fname);
if (!fp.is_open()) {
// error with opening file to write
std::cerr << "Error opening file " << fname << ": "
<< std::strerror(errno) << "\n";
return -1;
}
// for each point in the array
for (int i = 0; i < num_points; i++) {
// for each feature in the array
for (int j = 0; j < num_features; j++) {
fp << X[i][j]; // print the feature value
if (j < num_features - 1) { // if not the last feature
fp << ","; // suffix comma
}
}
if (i < num_points - 1) { // if not the last row
fp << "\n"; // start a new line
}
}
fp.close();
return 0;
}
/**
* Get minimum value and index of the value in a matrix
* \param[in] X matrix to search
* \param[in] N number of points in the vector
* \param[out] val minimum value found
* \param[out] idx_x x-index where minimum value was found
* \param[out] idx_y y-index where minimum value was found
*/
void get_min_2d(const std::vector<std::valarray<double>> &X, double *val,
int *x_idx, int *y_idx) {
val[0] = INFINITY; // initial min value
size_t N = X.size();
for (int i = 0; i < N; i++) { // traverse each x-index
auto result = std::min_element(std::begin(X[i]), std::end(X[i]));
double d_min = *result;
std::ptrdiff_t j = std::distance(std::begin(X[i]), result);
if (d_min < val[0]) { // if a lower value is found
// save the value and its index
x_idx[0] = i;
y_idx[0] = j;
val[0] = d_min;
}
}
}
/** \namespace machine_learning
* \brief Machine learning algorithms
*/
namespace machine_learning {
/** Minimum average distance of image nodes */
constexpr double MIN_DISTANCE = 1e-4;
/**
* Create the distance matrix or
* [U-matrix](https://en.wikipedia.org/wiki/U-matrix) from the trained
* 3D weiths matrix and save to disk.
*
* \param [in] fname filename to save in (gets overwriten without
* confirmation)
* \param [in] W model matrix to save
* \returns 0 if all ok
* \returns -1 if file creation failed
*/
int save_u_matrix(const char *fname,
const std::vector<std::vector<std::valarray<double>>> &W) {
std::ofstream fp(fname);
if (!fp) { // error with fopen
std::cerr << "File error (" << fname << "): " << std::strerror(errno)
<< std::endl;
return -1;
}
// neighborhood range
unsigned int R = 1;
for (int i = 0; i < W.size(); i++) { // for each x
for (int j = 0; j < W[0].size(); j++) { // for each y
double distance = 0.f;
int from_x = std::max<int>(0, i - R);
int to_x = std::min<int>(W.size(), i + R + 1);
int from_y = std::max<int>(0, j - R);
int to_y = std::min<int>(W[0].size(), j + R + 1);
int l = 0, m = 0;
#ifdef _OPENMP
#pragma omp parallel for reduction(+ : distance)
#endif
for (l = from_x; l < to_x; l++) { // scan neighborhoor in x
for (m = from_y; m < to_y; m++) { // scan neighborhood in y
auto d = W[i][j] - W[l][m];
double d2 = std::pow(d, 2).sum();
distance += std::sqrt(d2);
// distance += d2;
}
}
distance /= R * R; // mean distance from neighbors
fp << distance; // print the mean separation
if (j < W[0].size() - 1) { // if not the last column
fp << ','; // suffix comma
}
}
if (i < W.size() - 1) { // if not the last row
fp << '\n'; // start a new line
}
}
fp.close();
return 0;
}
/**
* Update weights of the SOM using Kohonen algorithm
*
* \param[in] X data point - N features
* \param[in,out] W weights matrix - PxQxN
* \param[in,out] D temporary vector to store distances PxQ
* \param[in] alpha learning rate \f$0<\alpha\le1\f$
* \param[in] R neighborhood range
* \returns minimum distance of sample and trained weights
*/
double update_weights(const std::valarray<double> &X,
std::vector<std::vector<std::valarray<double>>> *W,
std::vector<std::valarray<double>> *D, double alpha,
int R) {
int x = 0, y = 0;
int num_out_x = static_cast<int>(W->size()); // output nodes - in X
int num_out_y = static_cast<int>(W[0][0].size()); // output nodes - in Y
// int num_features = static_cast<int>(W[0][0][0].size()); // features =
// in Z
double d_min = 0.f;
#ifdef _OPENMP
#pragma omp for
#endif
// step 1: for each output point
for (x = 0; x < num_out_x; x++) {
for (y = 0; y < num_out_y; y++) {
(*D)[x][y] = 0.f;
// compute Euclidian distance of each output
// point from the current sample
auto d = ((*W)[x][y] - X);
(*D)[x][y] = (d * d).sum();
(*D)[x][y] = std::sqrt((*D)[x][y]);
}
}
// step 2: get closest node i.e., node with snallest Euclidian distance
// to the current pattern
int d_min_x = 0, d_min_y = 0;
get_min_2d(*D, &d_min, &d_min_x, &d_min_y);
// step 3a: get the neighborhood range
int from_x = std::max(0, d_min_x - R);
int to_x = std::min(num_out_x, d_min_x + R + 1);
int from_y = std::max(0, d_min_y - R);
int to_y = std::min(num_out_y, d_min_y + R + 1);
// step 3b: update the weights of nodes in the
// neighborhood
#ifdef _OPENMP
#pragma omp for
#endif
for (x = from_x; x < to_x; x++) {
for (y = from_y; y < to_y; y++) {
/* you can enable the following normalization if needed.
personally, I found it detrimental to convergence */
// const double s2pi = sqrt(2.f * M_PI);
// double normalize = 1.f / (alpha * s2pi);
/* apply scaling inversely proportional to distance from the
current node */
double d2 =
(d_min_x - x) * (d_min_x - x) + (d_min_y - y) * (d_min_y - y);
double scale_factor = std::exp(-d2 / (2.f * alpha * alpha));
(*W)[x][y] += (X - (*W)[x][y]) * alpha * scale_factor;
}
}
return d_min;
}
/**
* Apply incremental algorithm with updating neighborhood and learning
* rates on all samples in the given datset.
*
* \param[in] X data set
* \param[in,out] W weights matrix
* \param[in] alpha_min terminal value of alpha
*/
void kohonen_som(const std::vector<std::valarray<double>> &X,
std::vector<std::vector<std::valarray<double>>> *W,
double alpha_min) {
size_t num_samples = X.size(); // number of rows
// size_t num_features = X[0].size(); // number of columns
size_t num_out = W->size(); // output matrix size
size_t R = num_out >> 2, iter = 0;
double alpha = 1.f;
std::vector<std::valarray<double>> D(num_out);
for (int i = 0; i < num_out; i++) D[i] = std::valarray<double>(num_out);
double dmin = 1.f; // average minimum distance of all samples
double past_dmin = 1.f; // average minimum distance of all samples
double dmin_ratio = 1.f; // change per step
// Loop alpha from 1 to slpha_min
for (; alpha > 0 && dmin_ratio > 1e-5; alpha -= 1e-4, iter++) {
// Loop for each sample pattern in the data set
for (int sample = 0; sample < num_samples; sample++) {
// update weights for the current input pattern sample
dmin += update_weights(X[sample], W, &D, alpha, R);
}
// every 100th iteration, reduce the neighborhood range
if (iter % 300 == 0 && R > 1) {
R--;
}
dmin /= num_samples;
// termination condition variable -> % change in minimum distance
dmin_ratio = (past_dmin - dmin) / past_dmin;
if (dmin_ratio < 0) {
dmin_ratio = 1.f;
}
past_dmin = dmin;
std::cout << "iter: " << iter << "\t alpha: " << alpha << "\t R: " << R
<< "\t d_min: " << dmin_ratio << "\r";
}
std::cout << "\n";
}
} // namespace machine_learning
using machine_learning::kohonen_som;
using machine_learning::save_u_matrix;
/** @} */
/** Creates a random set of points distributed in four clusters in
* 3D space with centroids at the points
* * \f$(0,5, 0.5, 0.5)\f$
* * \f$(0,5,-0.5, -0.5)\f$
* * \f$(-0,5, 0.5, 0.5)\f$
* * \f$(-0,5,-0.5, -0.5)\f$
*
* \param[out] data matrix to store data in
*/
void test_2d_classes(std::vector<std::valarray<double>> *data) {
const int N = data->size();
const double R = 0.3; // radius of cluster
int i = 0;
const int num_classes = 4;
std::array<std::array<double, 2>, num_classes> centres = {
// centres of each class cluster
std::array<double, 2>({.5, .5}), // centre of class 1
std::array<double, 2>({.5, -.5}), // centre of class 2
std::array<double, 2>({-.5, .5}), // centre of class 3
std::array<double, 2>({-.5, -.5}) // centre of class 4
};
#ifdef _OPENMP
#pragma omp for
#endif
for (i = 0; i < N; i++) {
// select a random class for the point
int cls = std::rand() % num_classes;
// create random coordinates (x,y,z) around the centre of the class
data[0][i][0] = _random(centres[cls][0] - R, centres[cls][0] + R);
data[0][i][1] = _random(centres[cls][1] - R, centres[cls][1] + R);
/* The follosing can also be used
for (int j = 0; j < 2; j++)
data[i][j] = _random(centres[class][j] - R, centres[class][j] + R);
*/
}
}
/** Test that creates a random set of points distributed in four clusters in
* circumference of a circle and trains an SOM that finds that circular pattern.
* The following [CSV](https://en.wikipedia.org/wiki/Comma-separated_values)
* files are created to validate the execution:
* * `test1.csv`: random test samples points with a circular pattern
* * `w11.csv`: initial random map
* * `w12.csv`: trained SOM map
*/
void test1() {
int j = 0, N = 300;
int features = 2;
int num_out = 30;
std::vector<std::valarray<double>> X(N);
std::vector<std::vector<std::valarray<double>>> W(num_out);
for (int i = 0; i < std::max(num_out, N); i++) {
// loop till max(N, num_out)
if (i < N) { // only add new arrays if i < N
X[i] = std::valarray<double>(features);
}
if (i < num_out) { // only add new arrays if i < num_out
W[i] = std::vector<std::valarray<double>>(num_out);
for (int k = 0; k < num_out; k++) {
W[i][k] = std::valarray<double>(features);
#ifdef _OPENMP
#pragma omp for
#endif
for (j = 0; j < features; j++) {
// preallocate with random initial weights
W[i][k][j] = _random(-10, 10);
}
}
}
}
test_2d_classes(&X); // create test data around circumference of a circle
save_2d_data("test1.csv", X); // save test data points
save_u_matrix("w11.csv", W); // save initial random weights
kohonen_som(X, &W, 1e-4); // train the SOM
save_u_matrix("w12.csv", W); // save the resultant weights
}
/** Creates a random set of points distributed in four clusters in
* 3D space with centroids at the points
* * \f$(0,5, 0.5, 0.5)\f$
* * \f$(0,5,-0.5, -0.5)\f$
* * \f$(-0,5, 0.5, 0.5)\f$
* * \f$(-0,5,-0.5, -0.5)\f$
*
* \param[out] data matrix to store data in
*/
void test_3d_classes1(std::vector<std::valarray<double>> *data) {
const size_t N = data->size();
const double R = 0.3; // radius of cluster
int i = 0;
const int num_classes = 4;
const std::array<std::array<double, 3>, num_classes> centres = {
// centres of each class cluster
std::array<double, 3>({.5, .5, .5}), // centre of class 1
std::array<double, 3>({.5, -.5, -.5}), // centre of class 2
std::array<double, 3>({-.5, .5, .5}), // centre of class 3
std::array<double, 3>({-.5, -.5 - .5}) // centre of class 4
};
#ifdef _OPENMP
#pragma omp for
#endif
for (i = 0; i < N; i++) {
// select a random class for the point
int cls = std::rand() % num_classes;
// create random coordinates (x,y,z) around the centre of the class
data[0][i][0] = _random(centres[cls][0] - R, centres[cls][0] + R);
data[0][i][1] = _random(centres[cls][1] - R, centres[cls][1] + R);
data[0][i][2] = _random(centres[cls][2] - R, centres[cls][2] + R);
/* The follosing can also be used
for (int j = 0; j < 3; j++)
data[i][j] = _random(centres[class][j] - R, centres[class][j] + R);
*/
}
}
/** Test that creates a random set of points distributed in 4 clusters in
* 3D space and trains an SOM that finds the topological pattern. The following
* [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created
* to validate the execution:
* * `test2.csv`: random test samples points with a lamniscate pattern
* * `w21.csv`: initial random map
* * `w22.csv`: trained SOM map
*/
void test2() {
int j = 0, N = 300;
int features = 3;
int num_out = 30;
std::vector<std::valarray<double>> X(N);
std::vector<std::vector<std::valarray<double>>> W(num_out);
for (int i = 0; i < std::max(num_out, N); i++) {
// loop till max(N, num_out)
if (i < N) { // only add new arrays if i < N
X[i] = std::valarray<double>(features);
}
if (i < num_out) { // only add new arrays if i < num_out
W[i] = std::vector<std::valarray<double>>(num_out);
for (int k = 0; k < num_out; k++) {
W[i][k] = std::valarray<double>(features);
#ifdef _OPENMP
#pragma omp for
#endif
for (j = 0; j < features; j++) {
// preallocate with random initial weights
W[i][k][j] = _random(-10, 10);
}
}
}
}
test_3d_classes1(&X); // create test data around circumference of a circle
save_2d_data("test2.csv", X); // save test data points
save_u_matrix("w21.csv", W); // save initial random weights
kohonen_som(X, &W, 1e-4); // train the SOM
save_u_matrix("w22.csv", W); // save the resultant weights
}
/** Creates a random set of points distributed in four clusters in
* 3D space with centroids at the points
* * \f$(0,5, 0.5, 0.5)\f$
* * \f$(0,5,-0.5, -0.5)\f$
* * \f$(-0,5, 0.5, 0.5)\f$
* * \f$(-0,5,-0.5, -0.5)\f$
*
* \param[out] data matrix to store data in
*/
void test_3d_classes2(std::vector<std::valarray<double>> *data) {
const size_t N = data->size();
const double R = 0.2; // radius of cluster
int i = 0;
const int num_classes = 8;
const std::array<std::array<double, 3>, num_classes> centres = {
// centres of each class cluster
std::array<double, 3>({.5, .5, .5}), // centre of class 1
std::array<double, 3>({.5, .5, -.5}), // centre of class 2
std::array<double, 3>({.5, -.5, .5}), // centre of class 3
std::array<double, 3>({.5, -.5, -.5}), // centre of class 4
std::array<double, 3>({-.5, .5, .5}), // centre of class 5
std::array<double, 3>({-.5, .5, -.5}), // centre of class 6
std::array<double, 3>({-.5, -.5, .5}), // centre of class 7
std::array<double, 3>({-.5, -.5, -.5}) // centre of class 8
};
#ifdef _OPENMP
#pragma omp for
#endif
for (i = 0; i < N; i++) {
// select a random class for the point
int cls = std::rand() % num_classes;
// create random coordinates (x,y,z) around the centre of the class
data[0][i][0] = _random(centres[cls][0] - R, centres[cls][0] + R);
data[0][i][1] = _random(centres[cls][1] - R, centres[cls][1] + R);
data[0][i][2] = _random(centres[cls][2] - R, centres[cls][2] + R);
/* The follosing can also be used
for (int j = 0; j < 3; j++)
data[i][j] = _random(centres[class][j] - R, centres[class][j] + R);
*/
}
}
/** Test that creates a random set of points distributed in eight clusters in
* 3D space and trains an SOM that finds the topological pattern. The following
* [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created
* to validate the execution:
* * `test3.csv`: random test samples points with a circular pattern
* * `w31.csv`: initial random map
* * `w32.csv`: trained SOM map
*/
void test3() {
int j = 0, N = 500;
int features = 3;
int num_out = 30;
std::vector<std::valarray<double>> X(N);
std::vector<std::vector<std::valarray<double>>> W(num_out);
for (int i = 0; i < std::max(num_out, N); i++) {
// loop till max(N, num_out)
if (i < N) { // only add new arrays if i < N
X[i] = std::valarray<double>(features);
}
if (i < num_out) { // only add new arrays if i < num_out
W[i] = std::vector<std::valarray<double>>(num_out);
for (int k = 0; k < num_out; k++) {
W[i][k] = std::valarray<double>(features);
#ifdef _OPENMP
#pragma omp for
#endif
for (j = 0; j < features; j++) {
// preallocate with random initial weights
W[i][k][j] = _random(-10, 10);
}
}
}
}
test_3d_classes2(&X); // create test data around circumference of a circle
save_2d_data("test3.csv", X); // save test data points
save_u_matrix("w31.csv", W); // save initial random weights
kohonen_som(X, &W, 1e-4); // train the SOM
save_u_matrix("w32.csv", W); // save the resultant weights
}
/**
* Convert clock cycle difference to time in seconds
*
* \param[in] start_t start clock
* \param[in] end_t end clock
* \returns time difference in seconds
*/
double get_clock_diff(clock_t start_t, clock_t end_t) {
return static_cast<double>(end_t - start_t) / CLOCKS_PER_SEC;
}
/** Main function */
int main(int argc, char **argv) {
#ifdef _OPENMP
std::cout << "Using OpenMP based parallelization\n";
#else
std::cout << "NOT using OpenMP based parallelization\n";
#endif
std::srand(std::time(nullptr));
std::clock_t start_clk = std::clock();
test1();
auto end_clk = std::clock();
std::cout << "Test 1 completed in " << get_clock_diff(start_clk, end_clk)
<< " sec\n";
start_clk = std::clock();
test2();
end_clk = std::clock();
std::cout << "Test 2 completed in " << get_clock_diff(start_clk, end_clk)
<< " sec\n";
start_clk = std::clock();
test3();
end_clk = std::clock();
std::cout << "Test 3 completed in " << get_clock_diff(start_clk, end_clk)
<< " sec\n";
std::cout
<< "(Note: Calculated times include: creating test sets, training "
"model and writing files to disk.)\n\n";
return 0;
}