-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
inv_sqrt.cpp
103 lines (93 loc) · 3.89 KB
/
inv_sqrt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
/**
* @file
* @brief Implementation of [the inverse square root
* Root](https://medium.com/hard-mode/the-legendary-fast-inverse-square-root-e51fee3b49d9).
* @details
* Two implementation to calculate inverse inverse root,
* from Quake III Arena (C++ version) and with a standard library (`cmath`).
* This algorithm is used to calculate shadows in Quake III Arena.
*/
#include <cassert> /// for assert
#include <cmath> /// for `std::sqrt`
#include <cstdint>
#include <iostream> /// for IO operations
#include <limits> /// for numeric_limits
/**
* @brief This is the function that calculates the fast inverse square root.
* The following code is the fast inverse square root implementation from
* Quake III Arena (Adapted for C++). More information can be found at
* [Wikipedia](https://en.wikipedia.org/wiki/Fast_inverse_square_root)
* @tparam T floating type
* @tparam iterations inverse square root, the greater the number of
* iterations, the more exact the result will be (1 or 2).
* @param x value to calculate
* @return the inverse square root
*/
template <typename T = double, char iterations = 2>
inline T Fast_InvSqrt(T x) {
using Tint = typename std::conditional<sizeof(T) == 8, std::int64_t,
std::int32_t>::type;
T y = x;
T x2 = y * 0.5;
Tint i =
*reinterpret_cast<Tint *>(&y); // Store floating-point bits in integer
i = (sizeof(T) == 8 ? 0x5fe6eb50c7b537a9 : 0x5f3759df) -
(i >> 1); // Initial guess for Newton's method
y = *reinterpret_cast<T *>(&i); // Convert new bits into float
y = y * (1.5 - (x2 * y * y)); // 1st iteration Newton's method
if (iterations == 2) {
y = y * (1.5 - (x2 * y * y)); // 2nd iteration, the more exact result
}
return y;
}
/**
* @brief This is the function that calculates the fast inverse square root.
* The following code is the fast inverse square root with standard lib (cmath)
* More information can be found at
* [LinkedIn](https://www.linkedin.com/pulse/fast-inverse-square-root-still-armin-kassemi-langroodi)
* @tparam T floating type
* @param number value to calculate
* @return the inverse square root
*/
template <typename T = double>
T Standard_InvSqrt(T number) {
T squareRoot = sqrt(number);
return 1.0f / squareRoot;
}
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
const float epsilon = 1e-3f;
/* Tests with multiple values */
assert(std::fabs(Standard_InvSqrt<float>(100.0f) - 0.0998449f) < epsilon);
assert(std::fabs(Standard_InvSqrt<double>(36.0f) - 0.166667f) < epsilon);
assert(std::fabs(Standard_InvSqrt(12.0f) - 0.288423f) < epsilon);
assert(std::fabs(Standard_InvSqrt<double>(5.0f) - 0.447141f) < epsilon);
assert(std::fabs(Fast_InvSqrt<float, 1>(100.0f) - 0.0998449f) < epsilon);
assert(std::fabs(Fast_InvSqrt<double, 1>(36.0f) - 0.166667f) < epsilon);
assert(std::fabs(Fast_InvSqrt(12.0f) - 0.288423) < epsilon);
assert(std::fabs(Fast_InvSqrt<double>(5.0f) - 0.447141) < epsilon);
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
std::cout << "The Fast inverse square root of 36 is: "
<< Fast_InvSqrt<float, 1>(36.0f) << std::endl;
std::cout << "The Fast inverse square root of 36 is: "
<< Fast_InvSqrt<double, 2>(36.0f) << " (2 iterations)"
<< std::endl;
std::cout << "The Fast inverse square root of 100 is: "
<< Fast_InvSqrt(100.0f)
<< " (With default template type and iterations: double, 2)"
<< std::endl;
std::cout << "The Standard inverse square root of 36 is: "
<< Standard_InvSqrt<float>(36.0f) << std::endl;
std::cout << "The Standard inverse square root of 100 is: "
<< Standard_InvSqrt(100.0f)
<< " (With default template type: double)" << std::endl;
}