-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
vector_cross_product.cpp
133 lines (120 loc) · 4.61 KB
/
vector_cross_product.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/**
* @file
*
* @brief Calculates the [Cross Product](https://en.wikipedia.org/wiki/Cross_product) and the magnitude of two mathematical 3D vectors.
*
*
* @details Cross Product of two vectors gives a vector.
* Direction Ratios of a vector are the numeric parts of the given vector. They are the tree parts of the
* vector which determine the magnitude (value) of the vector.
* The method of finding a cross product is the same as finding the determinant of an order 3 matrix consisting
* of the first row with unit vectors of magnitude 1, the second row with the direction ratios of the
* first vector and the third row with the direction ratios of the second vector.
* The magnitude of a vector is it's value expressed as a number.
* Let the direction ratios of the first vector, P be: a, b, c
* Let the direction ratios of the second vector, Q be: x, y, z
* Therefore the calculation for the cross product can be arranged as:
*
* ```
* P x Q:
* 1 1 1
* a b c
* x y z
* ```
*
* The direction ratios (DR) are calculated as follows:
* 1st DR, J: (b * z) - (c * y)
* 2nd DR, A: -((a * z) - (c * x))
* 3rd DR, N: (a * y) - (b * x)
*
* Therefore, the direction ratios of the cross product are: J, A, N
* The following C++ Program calculates the direction ratios of the cross products of two vector.
* The program uses a function, cross() for doing so.
* The direction ratios for the first and the second vector has to be passed one by one seperated by a space character.
*
* Magnitude of a vector is the square root of the sum of the squares of the direction ratios.
*
* ### Example:
* An example of a running instance of the executable program:
*
* Pass the first Vector: 1 2 3
* Pass the second Vector: 4 5 6
* The cross product is: -3 6 -3
* Magnitude: 7.34847
*
* @author [Shreyas Sable](https://github.com/Shreyas-OwO)
*/
#include <iostream>
#include <array>
#include <cmath>
#include <cassert>
/**
* @namespace math
* @brief Math algorithms
*/
namespace math {
/**
* @namespace vector_cross
* @brief Functions for Vector Cross Product algorithms
*/
namespace vector_cross {
/**
* @brief Function to calculate the cross product of the passed arrays containing the direction ratios of the two mathematical vectors.
* @param A contains the direction ratios of the first mathematical vector.
* @param B contains the direction ration of the second mathematical vector.
* @returns the direction ratios of the cross product.
*/
std::array<double, 3> cross(const std::array<double, 3> &A, const std::array<double, 3> &B) {
std::array<double, 3> product;
/// Performs the cross product as shown in @algorithm.
product[0] = (A[1] * B[2]) - (A[2] * B[1]);
product[1] = -((A[0] * B[2]) - (A[2] * B[0]));
product[2] = (A[0] * B[1]) - (A[1] * B[0]);
return product;
}
/**
* @brief Calculates the magnitude of the mathematical vector from it's direction ratios.
* @param vec an array containing the direction ratios of a mathematical vector.
* @returns type: double description: the magnitude of the mathematical vector from the given direction ratios.
*/
double mag(const std::array<double, 3> &vec) {
double magnitude = sqrt((vec[0] * vec[0]) + (vec[1] * vec[1]) + (vec[2] * vec[2]));
return magnitude;
}
} /// namespace vector_cross
} /// namespace math
/**
* @brief test function.
* @details test the cross() and the mag() functions.
*/
static void test() {
/// Tests the cross() function.
std::array<double, 3> t_vec = math::vector_cross::cross({1, 2, 3}, {4, 5, 6});
assert(t_vec[0] == -3 && t_vec[1] == 6 && t_vec[2] == -3);
/// Tests the mag() function.
double t_mag = math::vector_cross::mag({6, 8, 0});
assert(t_mag == 10);
}
/**
* @brief Main Function
* @details Asks the user to enter the direction ratios for each of the two mathematical vectors using std::cin
* @returns 0 on exit
*/
int main() {
/// Tests the functions with sample input before asking for user input.
test();
std::array<double, 3> vec1;
std::array<double, 3> vec2;
/// Gets the values for the first vector.
std::cout << "\nPass the first Vector: ";
std::cin >> vec1[0] >> vec1[1] >> vec1[2];
/// Gets the values for the second vector.
std::cout << "\nPass the second Vector: ";
std::cin >> vec2[0] >> vec2[1] >> vec2[2];
/// Displays the output out.
std::array<double, 3> product = math::vector_cross::cross(vec1, vec2);
std::cout << "\nThe cross product is: " << product[0] << " " << product[1] << " " << product[2] << std::endl;
/// Displays the magnitude of the cross product.
std::cout << "Magnitude: " << math::vector_cross::mag(product) << "\n" << std::endl;
return 0;
}