-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
durand_kerner_roots.cpp
340 lines (294 loc) · 11 KB
/
durand_kerner_roots.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/**
* @file
* \brief Compute all possible approximate roots of any given polynomial using
* [Durand Kerner
* algorithm](https://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method)
* \author [Krishna Vedala](https://github.com/kvedala)
*
* Test the algorithm online:
* https://gist.github.com/kvedala/27f1b0b6502af935f6917673ec43bcd7
*
* Try the highly unstable Wilkinson's polynomial:
* ```
* ./numerical_methods/durand_kerner_roots 1 -210 20615 -1256850 53327946
* -1672280820 40171771630 -756111184500 11310276995381 -135585182899530
* 1307535010540395 -10142299865511450 63030812099294896 -311333643161390640
* 1206647803780373360 -3599979517947607200 8037811822645051776
* -12870931245150988800 13803759753640704000 -8752948036761600000
* 2432902008176640000
* ```
* Sample implementation results to compute approximate roots of the equation
* \f$x^4-1=0\f$:\n
* <img
* src="https://raw.githubusercontent.com/TheAlgorithms/C-Plus-Plus/docs/images/numerical_methods/durand_kerner_error.svg"
* width="400" alt="Error evolution during root approximations computed every
* iteration."/> <img
* src="https://raw.githubusercontent.com/TheAlgorithms/C-Plus-Plus/docs/images/numerical_methods/durand_kerner_roots.svg"
* width="400" alt="Roots evolution - shows the initial approximation of the
* roots and their convergence to a final approximation along with the iterative
* approximations" />
*/
#include <algorithm>
#include <cassert>
#include <cmath>
#include <complex>
#include <cstdint>
#include <cstdlib>
#include <ctime>
#include <fstream>
#include <iostream>
#include <valarray>
#ifdef _OPENMP
#include <omp.h>
#endif
#define ACCURACY 1e-10 /**< maximum accuracy limit */
/**
* Evaluate the value of a polynomial with given coefficients
* \param[in] coeffs coefficients of the polynomial
* \param[in] x point at which to evaluate the polynomial
* \returns \f$f(x)\f$
**/
std::complex<double> poly_function(const std::valarray<double> &coeffs,
std::complex<double> x) {
double real = 0.f, imag = 0.f;
int n;
// #ifdef _OPENMP
// #pragma omp target teams distribute reduction(+ : real, imag)
// #endif
for (n = 0; n < coeffs.size(); n++) {
std::complex<double> tmp =
coeffs[n] * std::pow(x, coeffs.size() - n - 1);
real += tmp.real();
imag += tmp.imag();
}
return std::complex<double>(real, imag);
}
/**
* create a textual form of complex number
* \param[in] x point at which to evaluate the polynomial
* \returns pointer to converted string
*/
const char *complex_str(const std::complex<double> &x) {
#define MAX_BUFF_SIZE 50
static char msg[MAX_BUFF_SIZE];
std::snprintf(msg, MAX_BUFF_SIZE, "% 7.04g%+7.04gj", x.real(), x.imag());
return msg;
}
/**
* check for termination condition
* \param[in] delta point at which to evaluate the polynomial
* \returns `false` if termination not reached
* \returns `true` if termination reached
*/
bool check_termination(long double delta) {
static long double past_delta = INFINITY;
if (std::abs(past_delta - delta) <= ACCURACY || delta < ACCURACY)
return true;
past_delta = delta;
return false;
}
/**
* Implements Durand Kerner iterative algorithm to compute all roots of a
* polynomial.
*
* \param[in] coeffs coefficients of the polynomial
* \param[out] roots the computed roots of the polynomial
* \param[in] write_log flag whether to save the log file (default = `false`)
* \returns pair of values - number of iterations taken and final accuracy
* achieved
*/
std::pair<uint32_t, double> durand_kerner_algo(
const std::valarray<double> &coeffs,
std::valarray<std::complex<double>> *roots, bool write_log = false) {
long double tol_condition = 1;
uint32_t iter = 0;
int n;
std::ofstream log_file;
if (write_log) {
/*
* store intermediate values to a CSV file
*/
log_file.open("durand_kerner.log.csv");
if (!log_file.is_open()) {
perror("Unable to create a storage log file!");
std::exit(EXIT_FAILURE);
}
log_file << "iter#,";
for (n = 0; n < roots->size(); n++) log_file << "root_" << n << ",";
log_file << "avg. correction";
log_file << "\n0,";
for (n = 0; n < roots->size(); n++)
log_file << complex_str((*roots)[n]) << ",";
}
bool break_loop = false;
while (!check_termination(tol_condition) && iter < INT16_MAX &&
!break_loop) {
tol_condition = 0;
iter++;
break_loop = false;
if (log_file.is_open())
log_file << "\n" << iter << ",";
#ifdef _OPENMP
#pragma omp parallel for shared(break_loop, tol_condition)
#endif
for (n = 0; n < roots->size(); n++) {
if (break_loop)
continue;
std::complex<double> numerator, denominator;
numerator = poly_function(coeffs, (*roots)[n]);
denominator = 1.0;
for (int i = 0; i < roots->size(); i++)
if (i != n)
denominator *= (*roots)[n] - (*roots)[i];
std::complex<long double> delta = numerator / denominator;
if (std::isnan(std::abs(delta)) || std::isinf(std::abs(delta))) {
std::cerr << "\n\nOverflow/underrun error - got value = "
<< std::abs(delta) << "\n";
// return std::pair<uint32_t, double>(iter, tol_condition);
break_loop = true;
}
(*roots)[n] -= delta;
#ifdef _OPENMP
#pragma omp critical
#endif
tol_condition = std::max(tol_condition, std::abs(std::abs(delta)));
}
// tol_condition /= (degree - 1);
if (break_loop)
break;
if (log_file.is_open()) {
for (n = 0; n < roots->size(); n++)
log_file << complex_str((*roots)[n]) << ",";
}
#if defined(DEBUG) || !defined(NDEBUG)
if (iter % 500 == 0) {
std::cout << "Iter: " << iter << "\t";
for (n = 0; n < roots->size(); n++)
std::cout << "\t" << complex_str((*roots)[n]);
std::cout << "\t\tabsolute average change: " << tol_condition
<< "\n";
}
#endif
if (log_file.is_open())
log_file << tol_condition;
}
return std::pair<uint32_t, long double>(iter, tol_condition);
}
/**
* Self test the algorithm by checking the roots for \f$x^2+4=0\f$ to which the
* roots are \f$0 \pm 2i\f$
*/
void test1() {
const std::valarray<double> coeffs = {1, 0, 4}; // x^2 - 2 = 0
std::valarray<std::complex<double>> roots(2);
std::valarray<std::complex<double>> expected = {
std::complex<double>(0., 2.),
std::complex<double>(0., -2.) // known expected roots
};
/* initialize root approximations with random values */
for (int n = 0; n < roots.size(); n++) {
roots[n] = std::complex<double>(std::rand() % 100, std::rand() % 100);
roots[n] -= 50.f;
roots[n] /= 25.f;
}
auto result = durand_kerner_algo(coeffs, &roots, false);
for (int i = 0; i < roots.size(); i++) {
// check if approximations are have < 0.1% error with one of the
// expected roots
bool err1 = false;
for (int j = 0; j < roots.size(); j++)
err1 |= std::abs(std::abs(roots[i] - expected[j])) < 1e-3;
assert(err1);
}
std::cout << "Test 1 passed! - " << result.first << " iterations, "
<< result.second << " accuracy"
<< "\n";
}
/**
* Self test the algorithm by checking the roots for \f$0.015625x^3-1=0\f$ to
* which the roots are \f$(4+0i),\,(-2\pm3.464i)\f$
*/
void test2() {
const std::valarray<double> coeffs = {// 0.015625 x^3 - 1 = 0
1. / 64., 0., 0., -1.};
std::valarray<std::complex<double>> roots(3);
const std::valarray<std::complex<double>> expected = {
std::complex<double>(4., 0.), std::complex<double>(-2., 3.46410162),
std::complex<double>(-2., -3.46410162) // known expected roots
};
/* initialize root approximations with random values */
for (int n = 0; n < roots.size(); n++) {
roots[n] = std::complex<double>(std::rand() % 100, std::rand() % 100);
roots[n] -= 50.f;
roots[n] /= 25.f;
}
auto result = durand_kerner_algo(coeffs, &roots, false);
for (int i = 0; i < roots.size(); i++) {
// check if approximations are have < 0.1% error with one of the
// expected roots
bool err1 = false;
for (int j = 0; j < roots.size(); j++)
err1 |= std::abs(std::abs(roots[i] - expected[j])) < 1e-3;
assert(err1);
}
std::cout << "Test 2 passed! - " << result.first << " iterations, "
<< result.second << " accuracy"
<< "\n";
}
/***
* Main function.
* The comandline input arguments are taken as coeffiecients of a
*polynomial. For example, this command
* ```sh
* ./durand_kerner_roots 1 0 -4
* ```
* will find roots of the polynomial \f$1\cdot x^2 + 0\cdot x^1 + (-4)=0\f$
**/
int main(int argc, char **argv) {
/* initialize random seed: */
std::srand(std::time(nullptr));
if (argc < 2) {
test1(); // run tests when no input is provided
test2(); // and skip tests when input polynomial is provided
std::cout << "Please pass the coefficients of the polynomial as "
"commandline "
"arguments.\n";
return 0;
}
int n, degree = argc - 1; // detected polynomial degree
std::valarray<double> coeffs(degree); // create coefficiencts array
// number of roots = degree - 1
std::valarray<std::complex<double>> s0(degree - 1);
std::cout << "Computing the roots for:\n\t";
for (n = 0; n < degree; n++) {
coeffs[n] = strtod(argv[n + 1], nullptr);
if (n < degree - 1 && coeffs[n] != 0)
std::cout << "(" << coeffs[n] << ") x^" << degree - n - 1 << " + ";
else if (coeffs[n] != 0)
std::cout << "(" << coeffs[n] << ") x^" << degree - n - 1
<< " = 0\n";
/* initialize root approximations with random values */
if (n < degree - 1) {
s0[n] = std::complex<double>(std::rand() % 100, std::rand() % 100);
s0[n] -= 50.f;
s0[n] /= 50.f;
}
}
// numerical errors less when the first coefficient is "1"
// hence, we normalize the first coefficient
{
double tmp = coeffs[0];
coeffs /= tmp;
}
clock_t end_time, start_time = clock();
auto result = durand_kerner_algo(coeffs, &s0, true);
end_time = clock();
std::cout << "\nIterations: " << result.first << "\n";
for (n = 0; n < degree - 1; n++)
std::cout << "\t" << complex_str(s0[n]) << "\n";
std::cout << "absolute average change: " << result.second << "\n";
std::cout << "Time taken: "
<< static_cast<double>(end_time - start_time) / CLOCKS_PER_SEC
<< " sec\n";
return 0;
}