-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
count_inversions.cpp
275 lines (261 loc) · 8.73 KB
/
count_inversions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/**
* @file
* @brief Counting Inversions using [Merge
Sort](https://en.wikipedia.org/wiki/Merge_sort)
*
* @details
* Program to count the number of inversions in an array
* using merge-sort.
*
* The count of inversions help to determine how close the array
* is to be sorted in ASCENDING order.
*
* two elements a[i] and a[j] form an inversion if `a[i]` > `a[j]` and i < j
*
* Time Complexity --> `O(n.log n)`
* Space Complexity --> `O(n)` ; additional array `temp[1..n]`
* ### Algorithm
* 1. The idea is similar to merge sort, divide the array into two equal or
almost
* equal halves in each step until the base case is reached.
* 2. Create a function merge that counts the number of inversions when two
halves of
* the array are merged, create two indices i and j, i is the index for
first half
* and j is an index of the second half. if `a[i]` is greater than `a[j]`,
then there are (mid – i)
* inversions, Because left and right subarrays are sorted, so all the
remaining elements
* in left-subarray (a[i+1], a[i+2] … a[mid]) will be greater than a[j].
* 3. Create a recursive function to divide the array into halves and find the
answer by summing
* the number of inversions is the first half, number of inversion in the
second half and
* the number of inversions by merging the two.
* 4. The base case of recursion is when there is only one element in the
given half.
* 5. Print the answer
*
* @author [Rakshit Raj](https://github.com/rakshitraj)
*/
#include <cassert> /// for assert
#include <cstdint> /// for typedef datatype uint64_t
#include <iostream> /// for IO operations
#include <vector> /// for std::vector
/**
* @namespace sorting
* @brief Sorting algorithms
*/
namespace sorting {
/**
* @namespace inversion
* @brief Functions for counting inversions using Merge Sort algorithm
*/
namespace inversion {
// Functions used --->
// int mergeSort(int* arr, int* temp, int left, int right);
// int merge(int* arr, int* temp, int left, int mid, int right);
// int countInversion(int* arr, const int size);
// void show(int* arr, const int size);
/**
* @brief Function to merge two sub-arrays.
*
* @details
* merge() function is called from mergeSort()
* to merge the array after it split for sorting
* by the mergeSort() funtion.
*
* In this case the merge fuction will also count and return
* inversions detected when merging the sub arrays.
*
* @param arr input array, data-menber of vector
* @param temp stores the resultant merged array
* @param left lower bound of `arr[]` and left-sub-array
* @param mid midpoint, upper bound of left sub-array,
* `(mid+1)` gives the lower bound of right-sub-array
* @param right upper bound of `arr[]` and right-sub-array
* @returns number of inversions found in merge step
*/
template <typename T>
uint32_t merge(T* arr, T* temp, uint32_t left, uint32_t mid, uint32_t right) {
uint32_t i = left; /* i --> index of left sub-array */
uint32_t j = mid + 1; /* j --> index for right sub-array */
uint32_t k = left; /* k --> index for resultant array temp */
uint32_t inv_count = 0; // inversion count
while ((i <= mid) && (j <= right)) {
if (arr[i] <= arr[j]) {
temp[k++] = arr[i++];
} else {
temp[k++] = arr[j++];
inv_count +=
(mid - i +
1); // tricky; may vary depending on selection of sub-array
}
}
// Add remaining elements from the larger subarray to the end of temp
while (i <= mid) {
temp[k++] = arr[i++];
}
while (j <= right) {
temp[k++] = arr[j++];
}
// Copy temp[] to arr[]
for (k = left; k <= right; k++) {
arr[k] = temp[k];
}
return inv_count;
}
/**
* @brief Implement merge Sort and count inverions while merging
*
* @details
* The mergeSort() function implements Merge Sort, a
* Divide and conquer algorithm, it divides the input
* array into two halves and calls itself for each
* sub-array and then calls the merge() function to
* merge the two halves.
*
* @param arr - array to be sorted
* @param temp - merged resultant array
* @param left - lower bound of array
* @param right - upper bound of array
* @returns number of inversions in array
*/
template <typename T>
uint32_t mergeSort(T* arr, T* temp, uint32_t left, uint32_t right) {
uint32_t mid = 0, inv_count = 0;
if (right > left) {
// midpoint to split the array
mid = (right + left) / 2;
// Add inversions in left and right sub-arrays
inv_count += mergeSort(arr, temp, left, mid); // left sub-array
inv_count += mergeSort(arr, temp, mid + 1, right);
// inversions in the merge step
inv_count += merge(arr, temp, left, mid, right);
}
return inv_count;
}
/**
* @brief Function countInversion() returns the number of inversion
* present in the input array. Inversions are an estimate of
* how close or far off the array is to being sorted.
*
* @details
* Number of inversions in a sorted array is 0.
* Number of inversion in an array[1...n] sorted in
* non-ascending order is n(n-1)/2, since each pair of elements
* contitute an inversion.
*
* @param arr - array, data member of std::vector<int>, input for counting
* inversions
* @param array_size - number of elementa in the array
* @returns number of inversions in input array, sorts the array
*/
template <class T>
uint32_t countInversion(T* arr, const uint32_t size) {
std::vector<T> temp;
temp.reserve(size);
temp.assign(size, 0);
return mergeSort(arr, temp.data(), 0, size - 1);
}
/**
* @brief UTILITY function to print array.
* @param arr[] array to print
* @param array_size size of input array arr[]
* @returns void
*
*/
template <typename T>
void show(T* arr, const uint32_t array_size) {
std::cout << "Printing array: \n";
for (uint32_t i = 0; i < array_size; i++) {
std::cout << " " << arr[i];
}
std::cout << "\n";
}
} // namespace inversion
} // namespace sorting
/**
* @brief Test implementations
* @returns void
*/
static void test() {
// Test 1
std::vector<uint64_t> arr1 = {
100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84,
83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67,
66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50,
49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33,
32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16,
15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
uint32_t size1 = arr1.size();
uint32_t inv_count1 = 4950;
uint32_t result1 = sorting::inversion::countInversion(arr1.data(), size1);
assert(inv_count1 == result1);
// Test 2
std::vector<int> arr2 = {22, 66, 75, 23, 11, 87, 2, 44, 98, 43};
uint32_t size2 = arr2.size();
uint32_t inv_count2 = 20;
uint32_t result2 = sorting::inversion::countInversion(arr2.data(), size2);
assert(inv_count2 == result2);
// Test 3
std::vector<double> arr3 = {33.1, 45.2, 65.4, 76.5, 1.0,
2.9, 5.4, 7.7, 88.9, 12.4};
uint32_t size3 = arr3.size();
uint32_t inv_count3 = 21;
uint32_t result3 = sorting::inversion::countInversion(arr3.data(), size3);
assert(inv_count3 == result3);
// Test 4
std::vector<char> arr4 = {'a', 'b', 'c', 'd', 'e'};
uint32_t size4 = arr4.size();
uint32_t inv_count4 = 0;
uint32_t result4 = sorting::inversion::countInversion(arr4.data(), size4);
assert(inv_count4 == result4);
}
// /**
// * @brief Program Body contains all main funtionality
// * @returns void
// */
// template <typename T>
// static void body() {
// // Input your own sequence
// uint_t size;
// T input;
// std::cout << "Enter number of elements:";
// std::cin >> size;
//
// std::vector<T> arr;
// arr.reserve(size);
//
// std::cout << "Enter elements -->\n";
// for (uint64_t i=1; i<=size; i++) {
// std::cout << "Element "<< i <<" :";
// std::cin >> input;
// arr.push_back(input);
// }
//
// if (size != arr.size()) {
// size = arr.size();
// }
//
// std::cout << "\n";
// sorting::inversion::show(arr.data(), size);
// std::cout << "\n";
//
// // Counting inversions
// std::cout << "\nThe number of inversions: "<<
// sorting::inversion::countInversion(arr.data(), size) << "\n";
//
// // Output sorted array
// std::cout << "\nSorted array --> \n";
// sorting::inversion::show(arr.data(), size);
// }
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // Run test implementations
// body(); // test your own array
return 0;
}