-
Notifications
You must be signed in to change notification settings - Fork 254
/
Copy pathtext_generation.py
273 lines (250 loc) · 12.3 KB
/
text_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
r"""
文本生成任务简易教程
"""
import os
import sys
sys.path.extend(['..', '../..'])
import torch
import argparse
import numpy as np
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from transformers import (
AdamW, get_linear_schedule_with_warmup,
BertConfig, BertTokenizer, BertModel
)
from prettytable import PrettyTable
from codes.nlper.modules.trainer import Trainer
from codes.nlper.modules.metrics import Metrics, RougeMetric
from codes.nlper.modules.decoders import TransformerDecoder
from codes.nlper.utils.datasets import DatasetGen
from codes.nlper.utils.format_convert import dureaderqg_convert
from codes.nlper.utils import seed_everything, set_devices, Dict2Obj, dataset_names
class Roberta2Transformer(nn.Module):
def __init__(self, args):
super(Roberta2Transformer, self).__init__()
self.max_tgt_len = args.max_tgt_len
roberta_config = BertConfig.from_pretrained(args.pretrained_model)
self.tokenizer = BertTokenizer.from_pretrained(args.pretrained_model)
self.encoder = BertModel.from_pretrained(args.pretrained_model)
self.decoder = TransformerDecoder(d_model=roberta_config.hidden_size, num_decoder_layers=3, dim_feedforward=128)
self.fc_out = nn.Linear(roberta_config.hidden_size, roberta_config.vocab_size)
def forward(self, encoded_src, encoded_tgt=None):
"""teacher-forcing training
:param encoded_src: {'input_ids':[batch_size, src_len], 'token_type_ids':[batch_size, src_len],'attention_mask':[batch_size, src_len]}
:param encoded_tgt: 和encoded_src类似
:return: [batch_size, tgt_len-1, voc_size]
"""
if not encoded_tgt:
return self.predict(encoded_src, self.max_tgt_len)
src_input_ids, src_token_type_ids, src_attention_mask = encoded_src['input_ids'], \
encoded_src['token_type_ids'], \
encoded_src['attention_mask'] # 0:mask
tgt_input_ids, tgt_token_type_ids, tgt_attention_mask = encoded_tgt['input_ids'], \
encoded_tgt['token_type_ids'], \
encoded_tgt['attention_mask'] # 0:mask
# 剔除tgt中的结束符
batch_size = src_input_ids.size()[0]
device = src_input_ids.device
end_index = np.argwhere(tgt_input_ids.cpu().numpy()==self.tokenizer.sep_token_id)[:,1]
for i in range(len(end_index)):
end_index[i] += self.max_tgt_len*i
tgt_input_ids = torch.from_numpy(np.delete(tgt_input_ids.view(-1).cpu().numpy(), end_index)).reshape(batch_size, -1).to(device)
tgt_token_type_ids = torch.from_numpy(np.delete(tgt_token_type_ids.view(-1).cpu().numpy(), end_index)).reshape(batch_size, -1).to(device)
tgt_attention_mask = torch.from_numpy(np.delete(tgt_attention_mask.view(-1).cpu().numpy(), end_index)).reshape(batch_size, -1).to(device)
encode_outputs = self.encoder(src_input_ids, src_attention_mask, src_token_type_ids)
memory = encode_outputs.last_hidden_state
# [batch_size, tgt_len, dim]
embed_tgt = self.encoder.embeddings(input_ids=tgt_input_ids)
decode_output = self.decoder(embed_tgt, memory, src_attention_mask==0)
final = decode_output.last_hidden_state
# [batch_size, tgt_len-1, voc_size]
return self.fc_out(final)
def predict(self, encoded_src, max_len=32):
batch_size = len(encoded_src['input_ids'])
device = self.encoder.device
# 初始化输入[CLS], [batch_size, 1]
tgt_ids = torch.tensor([[self.tokenizer.cls_token_id] for ex in range(batch_size)], device=device)
tgt_ids_probs = None
cur_len = 1
# get memory
encode_outputs = self.encoder(encoded_src['input_ids'], encoded_src['attention_mask'], encoded_src['token_type_ids'])
memory = encode_outputs.last_hidden_state
while cur_len < max_len:
encoded_tgt = {
'input_ids': tgt_ids,
'token_type_ids': torch.tensor([[0] * cur_len for ex in range(batch_size)], device=device),
'attention_mask': torch.tensor([[1] * cur_len for ex in range(batch_size)], device=device)
}
# [batch_size, cur_len, dim]
embed_tgt = self.encoder.embeddings(input_ids=encoded_tgt['input_ids'])
decode_output = self.decoder(embed_tgt, memory, encoded_src['attention_mask']==0)
# 将生成的结果添加到下一次输入中
# [batch_size, cur_len, voc_size]
final = self.fc_out(decode_output.last_hidden_state)
if tgt_ids_probs == None:
tgt_ids_probs = final
else:
tgt_ids_probs = torch.cat([tgt_ids_probs, final[:,-1].unsqueeze(1)], dim=1)
tgt_ids = torch.cat([tgt_ids, final[:,-1].argmax(dim=1).unsqueeze(1)], dim=1)
cur_len += 1
# [batch_size, max_len-1, voc_size]
return tgt_ids_probs
class DataCollatorWithPadding():
def __init__(self, tokenizer):
self.tokenizer = tokenizer
def __call__(self, batch):
# batch: list of ['encoded_src':xxx, 'encoded_tgt':xxx] or ['encoded_tgt':xxx], which depends on load_label
with_tgt = len(batch[0]) == 2
src = {'input_ids': [], 'token_type_ids': [], 'attention_mask': []}
tgt = {'input_ids': [], 'token_type_ids': [], 'attention_mask': []}
for example in batch:
ex_src = example['encoded_src']
for k, v in ex_src.items():
src[k].append(v)
if with_tgt:
ex_tgt = example['encoded_tgt']
for k, v in ex_tgt.items():
tgt[k].append(v)
batch_src = self.tokenizer.pad(
src,
padding=True,
return_tensors='pt'
)
if with_tgt:
batch_tgt = self.tokenizer.pad(
tgt,
padding=True,
return_tensors='pt'
)
return {
'encoded_src': batch_src.data, # dict
'encoded_tgt': batch_tgt.data
}
else:
return {
'encoded_src': batch_src.data
}
if __name__ == '__main__':
parser = argparse.ArgumentParser('text_gen')
# general
parser.add_argument('--task_name', default='text_gen', help='for train, do not change it')
parser.add_argument('--device_ids', default=[0], help='[-1]:cpu')
parser.add_argument('--seed', default=1000)
# dataset
parser.add_argument('--dataset_name', default='text_gen/DuReaderQG', help="if train/val/test can't be found, automatic download")
parser.add_argument('--dataset_cache_dir', default='../data')
parser.add_argument('--train_file', default='DuReaderQG/train.json', help='relative path for dataset_cache_dir')
parser.add_argument('--val_file', default='DuReaderQG/val.json', help='relative path for dataset_cache_dir')
parser.add_argument('--test_file', default='DuReaderQG/test.json', help='relative path for dataset_cache_dir')
parser.add_argument('--max_src_len', default=512, help='max length to truncate for src')
parser.add_argument('--max_tgt_len', default=32, help='max length to truncate for tgt')
# train
parser.add_argument('--is_train', default=True)
parser.add_argument('--is_test', default=True)
parser.add_argument('--pretrained_model', default='hfl/chinese-roberta-wwm-ext', help='the name or path of pretrained language model')
parser.add_argument('--checkpoint', default='', help='continue to train from checkpoint')
parser.add_argument('--num_epochs', default=5)
parser.add_argument('--train_batch_size', default=8)
parser.add_argument('--test_batch_size', default=16)
parser.add_argument('--lr', default=7e-5)
parser.add_argument('--decoder_lr', default=3e-4)
parser.add_argument('--warmup_steps', default=0, help="the number of steps to warm up optimizer")
parser.add_argument('--weight_decay', default=0.01)
# save
parser.add_argument('--best_model_path', default='saved/model.bin', help='the path to save model with the highest performance')
parser.add_argument('--pred_saved', default='saved/pred.txt', help='the path to save prediction of test')
# print arguments
args = parser.parse_args()
seed_everything(args.seed)
device = set_devices(args.device_ids)
table = PrettyTable(['Param', 'Value'])
for item in vars(args):
table.add_row([item, vars(args)[item]])
table.align['Param'] = 'l'
table.align['Value'] = 'l'
print(table)
# load data
print('load data')
tokenizer = BertTokenizer.from_pretrained(args.pretrained_model)
args.train_file = os.path.join(args.dataset_cache_dir, args.train_file)
args.val_file = os.path.join(args.dataset_cache_dir, args.val_file)
args.test_file = os.path.join(args.dataset_cache_dir, args.test_file)
# 如果三者同时不存在(适用于第一次运行该代码)
if not (
os.path.isfile(args.train_file)
or os.path.isfile(args.val_file)
or os.path.isfile(args.test_file)
):
# 自动下载数据集
corpus = dataset_names[args.dataset_name](cache_dir=args.dataset_cache_dir)
is_over = corpus.prepare_data()
if not is_over:
print(f'please download dataset manually, and make sure data file path is correct')
exit()
train_data = dureaderqg_convert(args.train_file)
val_data = dureaderqg_convert(args.val_file)
test_data = dureaderqg_convert(args.test_file)
print(f'train length: {len(train_data)}')
print(f'val length: {len(val_data)}')
print(f'test length: {len(test_data)}')
# padding
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# dataset
train_dataset = DatasetGen(train_data, tokenizer, args.max_src_len, args.max_tgt_len)
val_dataset = DatasetGen(val_data, tokenizer, args.max_src_len, args.max_tgt_len)
test_dataset = DatasetGen(test_data, tokenizer, args.max_src_len, args.max_tgt_len)
# dataloader
train_loader = DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=data_collator)
val_loader = DataLoader(val_dataset, batch_size=args.test_batch_size, shuffle=False, collate_fn=data_collator)
test_loader = DataLoader(test_dataset, batch_size=args.test_batch_size, shuffle=False, collate_fn=data_collator)
print(f'number of train batch: {len(train_loader)}')
print(f'number of val batch: {len(val_loader)}')
print(f'number of test batch: {len(test_loader)}')
print('----------------------------------')
# create model
print('create model')
model = Roberta2Transformer(args).to(device)
print(model)
print('----------------------------------')
# create optimizer
specials = ['decoder', 'fc_out']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in specials)],
'weight_decay': args.weight_decay, 'lr': args.decoder_lr}, # decoder 和 fc_output
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in specials)],
'weight_decay': args.weight_decay, 'lr': args.lr} # encoder
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.lr)
# create scheduler
scheduler = get_linear_schedule_with_warmup(
optimizer,
args.warmup_steps,
args.num_epochs * len(train_loader)
)
# create evaluation metric
rougeL_metric = RougeMetric('rouge-l')
metrics = Metrics(
metrics={rougeL_metric.name: rougeL_metric},
target_metric=rougeL_metric.name # used for early stop and model saving
)
# load config
trainer_config = Dict2Obj(vars(args))
trainer_config.update({
'tokenizer': tokenizer,
'train_loader': train_loader,
'val_loader': val_loader,
'test_loader': test_loader,
'device': device,
'loss_fn': F.cross_entropy,
'optimizer': optimizer,
'scheduler': scheduler,
'metrics': metrics
})
# running
trainer = Trainer(model, trainer_config)
if args.is_train:
trainer.train()
if args.is_test:
trainer.test()