This repository has been archived by the owner on Jun 30, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathSnakefile_insal_rgcn_pytorch.smk
273 lines (256 loc) · 8.71 KB
/
Snakefile_insal_rgcn_pytorch.smk
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import numpy as np
import torch
import torch.optim as optim
#river-dl
code_dir = config['code_dir']
# if using river_dl installed with pip this is not needed
import sys
sys.path.insert(1, code_dir)
from river_dl.preproc_utils import asRunConfig
from river_dl.preproc_utils import prep_all_data
from river_dl.torch_utils import train_torch
from river_dl.torch_utils import rmse_masked
from river_dl.evaluate import combined_metrics
from river_dl.torch_models import RGCN_v1
from river_dl.predict import predict_from_io_data
#user-defined functions
from utils import *
out_dir = config['out_dir']
os.makedirs(out_dir, exist_ok=True)
#spatial holdout info
train_segs = check_spatial_segs(config['train_segs_f'])
val_segs = check_spatial_segs(config['val_segs_f'])
test_segs = check_spatial_segs(config['test_segs_f'])
rule all:
input:
f"{out_dir}/finetuned_weights.pth",
f"{out_dir}/finetune_log.csv",
expand("{outdir}/{metric_type}_metrics.csv",
outdir=out_dir,
metric_type=['overall', 'month', 'reach', 'month_reach', 'monthly_all_sites', 'monthly_site_based', 'monthly_reach', 'biweekly_all_sites', 'biweekly_site_based', 'biweekly_reach', 'year', 'year_reach', 'yearly_all_sites', 'yearly_site_based', 'yearly_reach'],
),
expand("{outdir}/asRunConfig.yml", outdir = out_dir),
expand("{outdir}/Snakefile", outdir = out_dir),
f"{out_dir}/trn_preds_obs.csv",
f"{out_dir}/val_preds_obs.csv",
f"{out_dir}/tst_preds_obs.csv"
#save the as-run config settings to a text file
rule as_run_config:
group: "prep"
output:
"{outdir}/asRunConfig.yml"
run:
asRunConfig(config, code_dir, output[0])
#save the as-run snakefile to the output
rule copy_snakefile:
group: "prep"
output:
"{outdir}/Snakefile"
shell:
"""
scp Snakefile_insal_rgcn_pytorch.smk {output[0]}
"""
rule prep_io_data:
group: "prep"
input:
config['attrs_file'],
config['obs_file'],
config['dist_matrix_file']
output:
"{outdir}/prepped.npz"
threads: 3
run:
prep_all_data(
x_data_file = input[0],
y_data_file = input[1],
distfile = input[2],
x_vars = txt_to_list(config['x_vars_file']),
spatial_idx_name = "PRMS_segid",
time_idx_name = "Date",
y_vars_finetune = config['y_vars'],
train_start_date = txt_to_list(config['train_start_date_f']),
train_end_date = txt_to_list(config['train_end_date_f']),
val_start_date = txt_to_list(config['val_start_date_f']),
val_end_date = txt_to_list(config['val_end_date_f']),
test_start_date = txt_to_list(config['test_start_date_f']),
test_end_date = txt_to_list(config['test_end_date_f']),
val_sites = val_segs,
test_sites = test_segs,
explicit_spatial_partition = True,
earliest_time = txt_to_list(config['earliest_date'])[0],
latest_time = txt_to_list(config['latest_date'])[0],
out_file = output[0],
trn_offset = config['trn_offset'],
tst_val_offset = config['tst_val_offset'],
seq_len = config['seq_len'],
log_y_vars = config['log_y_vars']
)
rule finetune_train:
group: "train"
input:
"{outdir}/prepped.npz"
output:
"{outdir}/finetuned_weights.pth",
"{outdir}/finetune_log.csv"
threads: 3
run:
data = np.load(input[0], allow_pickle=True)
num_segs = len(np.unique(data['ids_trn']))
adj_mx = data['dist_matrix']
in_dim = len(data['x_vars'])
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = RGCN_v1(input_dim = in_dim,
hidden_dim = config['hidden_size'],
adj_matrix = adj_mx,
recur_dropout = config['recurrent_dropout'],
dropout = config['dropout'],
device = device,
seed = config['seed'])
opt = optim.Adam(model.parameters(), lr = config['learning_rate'])
train_torch(model,
loss_function = rmse_masked,
optimizer = opt,
x_train = data['x_trn'],
y_train = data['y_obs_trn'],
x_val = data['x_val'],
y_val = data['y_obs_val'],
max_epochs = config['epochs'],
early_stopping_patience = config['early_stopping'],
batch_size = num_segs,
weights_file = output[0],
log_file = output[1],
device = device)
rule make_predictions:
input:
"{outdir}/finetuned_weights.pth",
"{outdir}/prepped.npz"
output:
"{outdir}/{partition}_preds.feather"
group: "train_predict_evaluate"
run:
data = np.load(input[1])
adj_mx = data['dist_matrix']
in_dim = len(data['x_vars'])
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = RGCN_v1(input_dim = in_dim,
hidden_dim = config['hidden_size'],
adj_matrix = adj_mx,
recur_dropout = config['recurrent_dropout'],
dropout = config['dropout'],
device = device,
seed = config['seed'])
opt = optim.Adam(model.parameters(), lr = config['learning_rate'])
model.load_state_dict(torch.load(input[0]))
predict_from_io_data(model = model,
io_data = input[1],
partition = wildcards.partition,
outfile = output[0],
trn_offset = config['trn_offset'],
tst_val_offset = config['tst_val_offset'],
spatial_idx_name = "PRMS_segid",
time_idx_name = "Date",
log_vars = config['log_y_vars'])
#Order in the list is:
# spatial (bool), temporal (False or timestep to use), time_aggregation (bool), site_based (bool)
def get_grp_arg(wildcards):
if wildcards.metric_type == 'overall':
return [False, False, False, False]
elif wildcards.metric_type == 'month':
return [False, 'M', False, False]
elif wildcards.metric_type == 'reach':
return [True, False, False, False]
elif wildcards.metric_type == 'month_reach':
return [True, 'M', False, False]
elif wildcards.metric_type == 'monthly_site_based':
return [False, 'M', True, True]
elif wildcards.metric_type == 'monthly_all_sites':
return [False, 'M', True, False]
elif wildcards.metric_type == 'monthly_reach':
return [True, 'M', True, False]
elif wildcards.metric_type == 'year':
return [False, 'Y', False, False]
elif wildcards.metric_type == 'year_reach':
return [True, 'Y', False, False]
elif wildcards.metric_type == 'yearly_site_based':
return [False, 'Y', True, True]
elif wildcards.metric_type == 'yearly_all_sites':
return [False, 'Y', True, False]
elif wildcards.metric_type == 'yearly_reach':
return [True, 'Y', True, False]
elif wildcards.metric_type == 'biweekly_site_based':
return [False, '2W', True, True]
elif wildcards.metric_type == 'biweekly_all_sites':
return [False, '2W', True, False]
elif wildcards.metric_type == 'biweekly_reach':
return [True, '2W', True, False]
#compute performance metrics
rule combine_metrics:
group: 'train_predict_evaluate'
input:
config['obs_file'],
"{outdir}/trn_preds.feather",
"{outdir}/val_preds.feather",
"{outdir}/tst_preds.feather"
output:
"{outdir}/{metric_type}_metrics.csv"
params:
grp_arg = get_grp_arg
run:
combined_metrics(obs_file = input[0],
pred_trn = input[1],
pred_val = input[2],
pred_tst = input[3],
train_sites = train_segs,
val_sites = val_segs,
test_sites = test_segs,
group_spatially = params.grp_arg[0],
group_temporally = params.grp_arg[1],
time_aggregation = params.grp_arg[2],
site_based = params.grp_arg[3],
outfile = output[0],
spatial_idx_name = "PRMS_segid",
time_idx_name = "Date")
#write prediction+obs files to use in R plot targets
rule write_preds_obs:
group: 'train_predict_evaluate'
input:
config['obs_file'],
"{outdir}/trn_preds.feather",
"{outdir}/val_preds.feather",
"{outdir}/tst_preds.feather"
output:
"{outdir}/trn_preds_obs.csv",
"{outdir}/val_preds_obs.csv",
"{outdir}/tst_preds_obs.csv"
run:
write_preds_obs(pred_file = input[1],
obs_file = input[0],
partition = 'trn',
spatial_idx_name = "PRMS_segid",
time_idx_name = "Date",
filepath = output[0],
spatial = config['spatial_write'],
train_sites = train_segs,
val_sites = val_segs,
test_sites = test_segs)
write_preds_obs(pred_file = input[2],
obs_file = input[0],
partition = 'val',
spatial_idx_name = "PRMS_segid",
time_idx_name = "Date",
filepath = output[1],
spatial = config['spatial_write'],
train_sites = train_segs,
val_sites = val_segs,
test_sites = test_segs)
write_preds_obs(pred_file = input[3],
obs_file = input[0],
partition = 'tst',
spatial_idx_name = "PRMS_segid",
time_idx_name = "Date",
filepath = output[2],
spatial = config['spatial_write'],
train_sites = train_segs,
val_sites = val_segs,
test_sites = test_segs)